
http://www.postgis.us/Presentations/PGOpen2014_Session2.html?print-pdf#/ 1/110

PostGIS 2.1 on
Caffeine: Raster,

Topology, and
pgRouting

Regina Obe and Leo Hsu

http://www.postgis.us http://www.bostongis.com

http://www.paragoncorporation.com http://www.postgresonline.com

Except where otherwise , content on these slides is licensed under a
.

noted Creative Commons Attribution 4.0
International license

http://www.postgis.us/
http://www.bostongis.com/
http://www.paragoncorporation.com/
http://www.postgresonline.com/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

http://www.postgis.us/Presentations/PGOpen2014_Session2.html?print-pdf#/ 2/110

Agenda
Beyond geometry and geography

Raster
Pixelated view of the world

Topology
Relational view of the world

pgRouting
Costs along a network

http://www.postgis.us/Presentations/PGOpen2014_Session2.html?print-pdf#/ 3/110

Load OSM data
hstore needs to be installed before you can use --hstore-all or --hstore

Data from https://mapzen.com/metro-extracts (Chicago) chicago.osm.pbf
osm2pgsql -d presentation -H Y -U postgres -P 5438 -W \
 -S default.style --hstore-all chicago.osm.pbf

https://mapzen.com/metro-extracts

http://www.postgis.us/Presentations/PGOpen2014_Session2.html?print-pdf#/ 4/110

Raster
Rasters are matrixes that you can perform analysis on. They can also be

rendered as pretty pictures. In PostGIS land, they live chopped into tiles in a
table row in a column type called raster. They are often found dancing with

geometries.

http://www.postgis.us/Presentations/PGOpen2014_Session2.html?print-pdf#/ 5/110

Let's see some rasters
We'll start with the serious (what real raster people work with) and move to

the playful (what even your toddler can grasp).

http://www.postgis.us/Presentations/PGOpen2014_Session2.html?print-pdf#/ 6/110

Digital Elevation Model (DEM)

http://www.postgis.us/Presentations/PGOpen2014_Session2.html?print-pdf#/ 7/110

Climate
Temperature, water fall, climate change

http://www.postgis.us/Presentations/PGOpen2014_Session2.html?print-pdf#/ 8/110

Rasterization of a Geometry
Geometries can be rasterized

http://www.postgis.us/Presentations/PGOpen2014_Session2.html?print-pdf#/ 9/110

An aerial clip

http://www.postgis.us/Presentations/PGOpen2014_Session2.html?print-pdf#/ 10/110

Mona Lisa

http://www.postgis.us/Presentations/PGOpen2014_Session2.html?print-pdf#/ 11/110

Next we'll look at raster under a
microscope

http://www.postgis.us/Presentations/PGOpen2014_Session2.html?print-pdf#/ 12/110

PostGIS raster under a microscope
Tiles
Pixels
Bands
Pixel Values

http://www.postgis.us/Presentations/PGOpen2014_Session2.html?print-pdf#/ 13/110

Rasters
Rasters are stored in table rows in a column of data type raster.

CREATE TABLE elevated(rid serial primary key, rast raster);

http://www.postgis.us/Presentations/PGOpen2014_Session2.html?print-pdf#/ 14/110

Tiles and Coverages
Rasters (especially those covering a large expanse of land) can be big so

we chop them into smaller bits called tiles for easier analysis.
Tiles covering continguous non-overlapping areas of space with same kind

of information we call:
A COVERAGE

http://www.postgis.us/Presentations/PGOpen2014_Session2.html?print-pdf#/ 15/110

Pixels as cells
Tiles are further broken down into pixels (or cells), organized into a matrix.

 Columns X

R
ow

s Y

Numbering starts at the upper-left corner

http://www.postgis.us/Presentations/PGOpen2014_Session2.html?print-pdf#/ 16/110

Pixels: Geospatial Space
Example of pixel min spots in WGS lon lat

 Longitude

Latitude

Note how Y coordinates are generally in reverse order of Pixel row
numbering.

http://www.postgis.us/Presentations/PGOpen2014_Session2.html?print-pdf#/ 17/110

Raster is broken into 1 or more bands
Think of each band as a separate matrix storing a particular theme of data

and particular numeric range.
One band can store elevation

Another temperature
Another vegetation

Another number of pizza restaurants in each area
If you just care about pretty pictures you can have a 4-band raster

representing RGBA channels (bands) in your picture

http://www.postgis.us/Presentations/PGOpen2014_Session2.html?print-pdf#/ 18/110

Pixel Band Types
Bands are classified by the range of numeric data they can store and each

band in a given raster can store a different range type of data.
1BB: 1-bit boolean
Bit Unsigned Integers (BUI): 2BUI, 4BUI, 8BUI, 16BUI, 32BUI
Bit Signed Integers (SI): 8BSI, 16BSI, 32BSI
Bit Floats (BF) - 32BF, 64BF

http://www.postgis.us/Presentations/PGOpen2014_Session2.html?print-pdf#/ 19/110

Pixel Values
Each pixel has slots for number of bands
3-banded raster means 3 values per pixel

http://www.postgis.us/Presentations/PGOpen2014_Session2.html?print-pdf#/ 20/110

Get data
Pictures from
Elevation data from

http://en.wikipedia.org/wiki/Chicago

http://www.webgis.com/terr_pages/IL/dem75/cook.html

http://en.wikipedia.org/wiki/Chicago
http://www.webgis.com/terr_pages/IL/dem75/cook.html

http://www.postgis.us/Presentations/PGOpen2014_Session2.html?print-pdf#/ 21/110

Raster toolkit
GDAL: http://www.gdal.org

PostGIS raster is built on Gdal and wraps a lot of the functions of GDAL in
an SQL wrapper

Commonly used command-line of GDAL
gdalinfo: inspect a given raster
gdal_translate: convert raster from one format to another
gdalwarp: transform raster from one spatial projection to another and also
changes format

http://www.gdal.org/

http://www.postgis.us/Presentations/PGOpen2014_Session2.html?print-pdf#/ 22/110

Loading Data
raster2pgsql

raster2pgsql is a command-line tool packaged with PostGIS 2+ that allows
loading data from various raster formats into PostGIS raster format. It

generates a sql load file or you can pipe directly to PostgreSQL with psql.

http://www.postgis.us/Presentations/PGOpen2014_Session2.html?print-pdf#/ 23/110

raster2pgsql options
RELEASE: 2.2.0dev GDAL_VERSION=111 (r12973)
USAGE: raster2pgsql [<options>] <raster>[<raster>[...]] [[<schema>.]<table>]
 Multiple rasters can also be specified using wildcards (*,?).

OPTIONS:
 -s <srid> Set the SRID field. Defaults to 0. If SRID not
 provided or is 0, raster's metadata will be checked to
 determine an appropriate SRID.
 -b <band> Index (1-based) of band to extract from raster. For more
 than one band index, separate with comma (,). Ranges can be
 defined by separating with dash (-). If unspecified, all bands
 of raster will be extracted.
 -t <tile size> Cut raster into tiles to be inserted one per
 table row. <tile size> is expressed as WIDTHxHEIGHT.
 <tile size> can also be "auto" to allow the loader to compute
 an appropriate tile size using the first raster and applied to
 all rasters.
 -P Pad right-most and bottom-most tiles to guarantee that all tiles
 have the same width and height.
 -R Register the raster as an out-of-db (filesystem) raster. Provided
 raster should have absolute path to the file
 (-d|a|c|p) These are mutually exclusive options:
 -d Drops the table, then recreates it and populates
 it with current raster data.
 -a Appends raster into current table, must be
 exactly the same table schema.
 -c Creates a new table and populates it, this is the

http://www.postgis.us/Presentations/PGOpen2014_Session2.html?print-pdf#/ 24/110

Warm-up Exercise
What kind of rasters can we load?

raster2pgsql -G

Should give you something like
Supported GDAL raster formats:
 Virtual Raster
 GeoTIFF
 National Imagery Transmission Format
 Raster Product Format TOC format
 ECRG TOC format
 Erdas Imagine Images (.img)
:
 Ground-based SAR Applications Testbed File Format (.gff
 ELAS
 Arc/Info Binary Grid
 Arc/Info ASCII Grid
 GRASS ASCII Grid
 SDTS Raster
 DTED Elevation Raster
 Portable Network Graphics
 JPEG JFIF
 In Memory Raster
:
 Graphics Interchange Format (.gif)
 Envisat Image Format
 Maptech BSB Nautical Charts
 X11 PixMap Format
 MS Windows Device Independent Bitmap
 SPOT DIMAP
 AirSAR Polarimetric Image
 RadarSat 2 XML Product
 :

http://www.postgis.us/Presentations/PGOpen2014_Session2.html?print-pdf#/ 25/110

Inspect metadata
Yes pictures have meta data, but don't care much about it as far as loading

goes
gdalinfo Chicago_sunrise_1.jpg

Size is 7550, 2400
Coordinate System is `'
Image Structure Metadata:
 COMPRESSION=JPEG
 INTERLEAVE=PIXEL
 SOURCE_COLOR_SPACE=YCbCr
Corner Coordinates:
Upper Left (0.0, 0.0)
Lower Left (0.0, 2400.0)
Upper Right (7550.0, 0.0)
Lower Right (7550.0, 2400.0)
Center (3775.0, 1200.0)
Band 1 Block=7550x1 Type=Byte, ColorInterp=Red
 Overviews: 3775x1200, 1888x600, 944x300
 Image Structure Metadata:
 COMPRESSION=JPEG
Band 2 Block=7550x1 Type=Byte, ColorInterp=Green
 Overviews: 3775x1200, 1888x600, 944x300
 Image Structure Metadata:
 COMPRESSION=JPEG
Band 3 Block=7550x1 Type=Byte, ColorInterp=Blue
 Overviews: 3775x1200, 1888x600, 944x300
 Image Structure Metadata:
 COMPRESSION=JPEG

http://www.postgis.us/Presentations/PGOpen2014_Session2.html?print-pdf#/ 26/110

Exercise: Load a folder of Pictures
In db

Don't waste your time with indexes and constraints. Don't bother tiling either
raster2pgsql -e -F -Y pics/*.jpg po.chicago_pics | psql -U postgres -d presentation

http://www.postgis.us/Presentations/PGOpen2014_Session2.html?print-pdf#/ 27/110

Exercise: Load a folder of Pictures
Keep out of database

For database snobs who feel rasters and gasp! pictures have no place in a
database. Use the -R switch

Warning: path you register must be accessible by postgres daemon and for
PostGIS 2.1.3+ , 2.0.6+ need to set POSTGIS_ENABLE_OUTDB_RASTERS

environment variable. For 2.2+ have option of GUCs.
raster2pgsql -R -e -F -Y /fullpath/pics/*.jpg po.chicago_pics \
| psql -U postgres -d presentation

http://www.postgis.us/Presentations/PGOpen2014_Session2.html?print-pdf#/ 28/110

GdalInfo: Inspect metadata before load
gdalinfo chicago-w.DEM

Size is 1201, 1201
Coordinate System is:
GEOGCS["NAD27",
DATUM["North_American_Datum_1927",
 SPHEROID["Clarke 1866",6378206.4,294.978698213898
 AUTHORITY["EPSG","7008"]],
 AUTHORITY["EPSG","6267"]],
PRIMEM["Greenwich",0,
 AUTHORITY["EPSG","8901"]],
UNIT["degree",0.0174532925199433,
 AUTHORITY["EPSG","9108"]],
AUTHORITY["EPSG","4267"]]
Origin = (-88.000416666666666,42.000416666666666)
Pixel Size = (0.000833333333333,-0.000833333333333)
Metadata:
AREA_OR_POINT=Point
Corner Coordinates:
Upper Left (-88.0004167, 42.0004167)
Lower Left (-88.0004167, 40.9995833)
Upper Right (-86.9995833, 42.0004167)
Lower Right (-86.9995833, 40.9995833)
Center (-87.5000000, 41.5000000)
Band 1 Block=1201x1201 Type=Int16, ColorInterp=Undefined
NoData Value=-32767
Unit Type: m

http://www.postgis.us/Presentations/PGOpen2014_Session2.html?print-pdf#/ 29/110

Exercise: Load Elevation data
Indexes are important, spatial ref is important, constraints are important too
And you want to tile cause it's gonna be a coverage where fast analysis of

small areas is important.
raster2pgsql -I -C -e -F -Y -t auto -s 4267 dems/*.DEM po.chicago_dem \
| psql -U postgres -d presentation

http://www.postgis.us/Presentations/PGOpen2014_Session2.html?print-pdf#/ 30/110

Viewing and outputting rasters
Lots of options, but first a warning.

PostGIS 2.1.3+ and 2.0.6+, security locked down, so you'll need to set:
POSTGIS_GDAL_ENABLED_DRIVERS to use built-in ST_AsPNG etc functions.

PostGIS 2.2+ allow to set using GUCS

http://www.postgis.us/Presentations/PGOpen2014_Session2.html?print-pdf#/ 31/110

Output with psql
Wrap your query in ST_AsPNG or ST_AsGDALRaster etc.

SELECT oid, lowrite(lo_open(oid, 131072), png) As num_bytes
 FROM
 (VALUES (lo_create(0),
 ST_AsPNG((SELECT rast FROM po.chicago_pics
 WHERE filename = 'Chicago_sunrise_1.jpg')
)
)) As v(oid,png);

 oid | num_bytes
---------+-----------
 9166618 | 16134052

\lo_export 9166618 'C:/temp.png'

http://www.postgis.us/Presentations/PGOpen2014_Session2.html?print-pdf#/ 32/110

Output with PHP or ASP.NET
We have a minimalist viewer proof of concept

 to view most of thesehttps://github.com/robe2/postgis_webviewer
We use it a lot to quickly view adhoc queries that return one raster image

and to generate pics in PostGIS docs.

https://github.com/robe2/postgis_webviewer

http://www.postgis.us/Presentations/PGOpen2014_Session2.html?print-pdf#/ 33/110

Output with Node.JS
We have a minimalist all encompassing Node.JS web server

https://github.com/robe2/node_postgis_express
This we'll use cause its pretty easy to setup and can do all.

https://github.com/robe2/node_postgis_express

http://www.postgis.us/Presentations/PGOpen2014_Session2.html?print-pdf#/ 34/110

Use GDAL tools
gdal_translate and gdalwarp are most popular.

http://www.postgis.us/Presentations/PGOpen2014_Session2.html?print-pdf#/ 35/110

gdal_translate example
gdal_translate -of PNG -outsize 10% 10% \
"PG:host=localhost port=5432 dbname='presentation'
 user='postgres' password='whatever'
 schema=po table=chicago_pics mode=2
 where='filename=\'Chicago_sunrise_1.jpg\'" test.png

http://www.postgis.us/Presentations/PGOpen2014_Session2.html?print-pdf#/ 36/110

gdalwarp example
gdalwarp -s_srs "EPSG:4326" \
 -t_srs "EPSG:2163" \
 PG:"host='localhost' port='5432' dbname='presentation'
 user='postgres' password='whatever'
 schema='po' table='chicago_dem'
 where='ST_Intersects(rast, ST_Transform(
 ST_MakeEnvelop(-87.527,41.8719, -87.950, 41.9000,4326),
 4267))'
 mode=2" dem_sub.tif

http://www.postgis.us/Presentations/PGOpen2014_Session2.html?print-pdf#/ 37/110

Use PL languages such as PL/Python
Any language that can run queries, output binaries and dump to file system

will do.

http://www.postgis.us/Presentations/PGOpen2014_Session2.html?print-pdf#/ 38/110

Just enough PL/Python to be dangerous
The file system output function

CREATE OR REPLACE FUNCTION
 write_file (param_bytes bytea, param_filepath text)
RETURNS text
AS $$
f = open(param_filepath, 'wb+')
f.write(param_bytes)
return param_filepath
$$ LANGUAGE plpython3u;

http://www.postgis.us/Presentations/PGOpen2014_Session2.html?print-pdf#/ 39/110

Let's output 120px wide thumbnails into a server folder
SELECT write_file(ST_AsPNG(ST_Resize(rast,
 (least(ST_Width(rast), 120))::int,
 (least(ST_Width(rast), 120.0) /
 ST_Width(rast)*ST_Height(rast))::int)
),
 'C:/pics/thumb_' || filename
)
 FROM po.chicago_pics ;

http://www.postgis.us/Presentations/PGOpen2014_Session2.html?print-pdf#/ 40/110

Exercises: PostGIS Raster Spatial SQL
Raster being served with a mix of geometry

http://www.postgis.us/Presentations/PGOpen2014_Session2.html?print-pdf#/ 41/110

Exercise: Extracting Select Band and
convert to image type

AKA: How to make your new pictures look really old
SELECT ST_AsPNG(ST_Band(rast,1)) As rast
 FROM po.chicago_pics
 WHERE filename='Full_chicago_skyline.jpg';

Before After

http://www.postgis.us/Presentations/PGOpen2014_Session2.html?print-pdf#/ 42/110

Reclassification
SELECT ST_AsPNG(
 ST_Reclass(ST_Band(rast,1),1,'0-70:255, 71-189:100, 190-255:200', '8BUI',255)
)
FROM po.chicago_pics
WHERE filename = 'Full_chicago_skyline.jpg';

Before After

http://www.postgis.us/Presentations/PGOpen2014_Session2.html?print-pdf#/ 43/110

Exercise: Resorting bands
There are good uses for this, but this is questionably not one of them.
SELECT ST_AsPNG(ST_Band(rast,'{3,2,1}'::integer[])) As png
 FROM po.chicago_pics
 WHERE filename='Full_chicago_skyline.jpg';

Before After

http://www.postgis.us/Presentations/PGOpen2014_Session2.html?print-pdf#/ 44/110

Roughness
You would do this with terrain data, but you could do it with pictures and

create a charcoal drawing. Gives you relative measure of difference
between max and min. Bears a striking resemblance to what you get when

applying the ST_Range4MA mapalgebra callback function.
SELECT ST_AsPNG(ST_Roughness(rast,1, NULL::raster, '8BUI'::text))
FROM chicago_pics
WHERE filename ILIKE 'Mona%';

Before After

http://www.postgis.us/Presentations/PGOpen2014_Session2.html?print-pdf#/ 45/110

Hillshade
Designed for elevation data (gives hypothetical illumination), but go ahead

and apply to your pictures and create a stone impression.
SELECT ST_AsPNG(ST_HillShade(rast,1, NULL::raster, '8BUI'::text, 90))
FROM chicago_pics WHERE filename ILIKE 'Mona%';

SELECT ST_AsPNG(ST_HillShade(rast,1, NULL::raster, '8BUI'::text, 315,30,150))
FROM chicago_pics WHERE filename ILIKE 'Mona%';

http://www.postgis.us/Presentations/PGOpen2014_Session2.html?print-pdf#/ 46/110

Aspect
Againt designed for elevation data, Returns the aspect (in degrees by

default) of an elevation raster band.
SELECT ST_AsPNG(ST_Aspect(rast,1, NULL::raster, '8BUI'::text))
FROM chicago_pics
WHERE filename ILIKE 'Mona%';

http://www.postgis.us/Presentations/PGOpen2014_Session2.html?print-pdf#/ 47/110

Map Algebra with ST_MapAlgebra
Operations done on a set of pixels (a neighborhood) where the value

returned by the operation becomes the new value for the center pixel. The
simplest operation works on a single cell (a 0-neighborhood).

In PostGIS the operation is expressed either as a PostgreSQL algebraic
expression, or a Postgres callback function that takes an n-dimensional

matrix of pixel values.
PostGIS has several built-in mapalgebra call-backs, but you can build your
own. PostGIS packaged ones all have 4MA in them: 4MA means for Map

Algebra
(ST_Min4MA, ST_Max4MA, ST_Mean4MA, ST_Range4MA (very similar to

ST_Roughness), ST_InvDistWeight4MA, ST_Sum4MA)).
Default neighborhood is 0 distance from pixel in x direction, and 0 distance

in y direction.

http://www.postgis.us/Presentations/PGOpen2014_Session2.html?print-pdf#/ 48/110

Map Algebra: Single-band
SELECT ST_AsPNG(ST_MapAlgebra(
 ARRAY[ROW(rast, 1)]::rastbandarg[],
 'ST_Min4MA(double precision[], int[], text[])'::regprocedure,
 '8BUI'::text, 'INTERSECTION'::text,
 NULL::raster, 1,1))
FROM chicago_pics
WHERE filename ILIKE 'Mona%';

Min Mean Max

http://www.postgis.us/Presentations/PGOpen2014_Session2.html?print-pdf#/ 49/110

ST_AddBand, MapAlgebra - apply to all bands
SELECT ST_AsPNG(ST_AddBand(NULL::raster,
 array_agg(ST_MapAlgebra(
 ARRAY[ROW(rast, i)]::rastbandarg[],
 'ST_Min4MA(double precision[], int[], text[])'::regprocedure,
 '8BUI'::text, 'INTERSECTION'::text,
 NULL::raster, 1,1
))))
FROM chicago_pics CROSS JOIN generate_series(1,3) As i
WHERE filename ILIKE 'Mona%';

Before Min Max

http://www.postgis.us/Presentations/PGOpen2014_Session2.html?print-pdf#/ 50/110

Exercise: Clipping
SELECT ST_Clip(rast, ST_Buffer(ST_Centroid(rast::geometry),100))
 FROM chicago_pics
 WHERE filename='Full_chicago_skyline.jpg';

http://www.postgis.us/Presentations/PGOpen2014_Session2.html?print-pdf#/ 51/110

Setting band nodata values
SELECT ST_SetBandNoDataValue(
 ST_SetBandNoDataValue(
 ST_SetBandNoDataValue(
 ST_Clip(rast,
 ST_Buffer(ST_Centroid(rast::geometry),200)),
 1,0),2,0),3,0)
 FROM chicago_pics
 WHERE filename='Full_chicago_skyline.jpg';

http://www.postgis.us/Presentations/PGOpen2014_Session2.html?print-pdf#/ 52/110

Resize, Shift, Union with SQL
SELECT ST_Union(
 ST_SetUpperLeft(
 ST_Resize(rast,i*0.3,i*0.3),i*150,i
)
)
 FROM chicago_pics CROSS JOIN generate_series(1,3) As i
 WHERE filename='Full_chicago_skyline.jpg';

http://www.postgis.us/Presentations/PGOpen2014_Session2.html?print-pdf#/ 53/110

Now for something
totally serious

People! Power of SQL is not for doodling
SQL should be used for REAL analysis and not to entertain your kids.

http://www.postgis.us/Presentations/PGOpen2014_Session2.html?print-pdf#/ 54/110

Exercise: Elevation at a point
SELECT ST_Value(rast,1,loc)
 FROM po.chicago_dem As d
 INNER JOIN
 ST_Transform(
 ST_SetSRID(ST_Point(-87.627,41.8819),4326),
 4267) As loc
 ON ST_Intersects(d.rast, loc);

181

Let's compare with Wikipedia's answer http://en.wikipedia.org/wiki/Chicago
Elevation [1](mean) 594 ft (181 m)
Highest elevation
– near Blue Island 672 ft (205 m)
Lowest elevation
– at Lake Michigan 578 ft (176 m)

http://en.wikipedia.org/wiki/Chicago

http://www.postgis.us/Presentations/PGOpen2014_Session2.html?print-pdf#/ 55/110

Exercise: Histogram of an area
Clip first to isolate region of interest

SELECT (h.hist).*
 FROM ST_Transform(
 ST_Buffer(
 ST_Point(-87.627,41.8819)::geography,
 5000)::geometry,4267
) As loc,
 LATERAL
 (SELECT ST_Histogram(ST_Union(ST_Clip(rast,loc)),1,5) As hist
 FROM po.chicago_dem As d
 WHERE ST_Intersects(d.rast, loc)) As h;

 min | max | count | percent
-----+-----+-------+----------------------
 166 | 171 | 5 | 0.00040983606557377
 171 | 176 | 8 | 0.000655737704918033
 176 | 181 | 7307 | 0.598934426229508
 181 | 186 | 4414 | 0.361803278688525
 186 | 191 | 466 | 0.0381967213114754
(5 rows)

http://www.postgis.us/Presentations/PGOpen2014_Session2.html?print-pdf#/ 56/110

Exercise: Quantiles of an area
Same exercise as histogram, but with Quants

SELECT (h.quant).*
 FROM ST_Transform(
 ST_Buffer(
 ST_Point(-87.627,41.8819)::geography,
 5000)::geometry,4267
) As loc,
 LATERAL
 (SELECT
 ST_Quantile(ST_Union(ST_Clip(rast,loc)),1,
 '{0.1,0.5,0.75}'::float[]) As quant
 FROM po.chicago_dem As d
 WHERE ST_Intersects(d.rast, loc)) As h;

 quantile | value
----------+-------
 0.1 | 176
 0.5 | 178
 0.75 | 181
(3 rows)

0

http://www.postgis.us/Presentations/PGOpen2014_Session2.html?print-pdf#/ 57/110

Transformation
Just like geometries we can transform raster data from one projection to

another. Let's transform to web mercator to match our OSM chicago data
CREATE TABLE po.chicago_dem_wmerc AS
 SELECT rid, ST_Transform(rast, 900913) As rast
 FROM po.chicago_dem;
 SELECT AddRasterConstraints('po'::name,
 'chicago_dem_wmerc'::name, 'rast'::name);

http://www.postgis.us/Presentations/PGOpen2014_Session2.html?print-pdf#/ 58/110

Let's check meta data
After plain vanilla transformation

SELECT r_table_name, srid, scale_x::numeric(10,5),
 scale_y::numeric(10,5), blocksize_x As bx, blocksize_y As by,
 same_alignment As sa
 FROM raster_columns
 WHERE r_table_name LIKE 'chicago_dem%';

 r_table_name | srid | scale_x | scale_y | bx | by | sa
------------------+--------+---------+----------+-----+-----+----
chicago_dem_wmerc | 900913 | | | 85 | 113 | f
chicago_dem | 4267 | 0.00083 | -0.00083 | 100 | 100 | t

oh oh, new tiles have inconsistent alignment and scale

http://www.postgis.us/Presentations/PGOpen2014_Session2.html?print-pdf#/ 59/110

raster ST_Transform has many forms
In order to union and so forth, we need our tiles aligned

WITH ref As (SELECT ST_Transform(rast,900913) As rast
 FROM po.chicago_dem LIMIT 1)
 SELECT d.rid, ST_Transform(d.rast, ref.rast, 'Lanczos') As rast
 INTO po.chicago_dem_wmerc
 from ref CROSS JOIN po.chicago_dem As d;

We arbitrarily picked first transformed raster to align with

http://www.postgis.us/Presentations/PGOpen2014_Session2.html?print-pdf#/ 60/110

New raster meta data using aligned
transform

After we repeat AddRasterConstraints and rerun our raster_columns
query

 r_table_name | srid | scale_x | scale_y | bx | by | sa
-------------------+--------+-----------+------------+-----+-----+----
 chicago_dem_wmerc | 900913 | 109.92805 | -109.92805 | 85 | 114 | t
 chicago_dem | 4267 | 0.00083 | -0.00083 | 100 | 100 | t

http://www.postgis.us/Presentations/PGOpen2014_Session2.html?print-pdf#/ 61/110

Index your rasters
CREATE INDEX idx_chicago_dem_wmerc_rast_gist
 ON po.chicago_dem_wmerc
 USING gist
 (st_convexhull(rast));

http://www.postgis.us/Presentations/PGOpen2014_Session2.html?print-pdf#/ 62/110

Colorize your dems with ST_ColorMap
DEMS are often not convertable to standard viewing formats like PNG, JPG,

or GIF because their band types are often 16BUI, BSI and so forth rather
than 8BUI.

With the beauty that is ST_ColorMap, you can change that.
INTERPOLATE, NEAREST, EXACT.

http://www.postgis.us/Presentations/PGOpen2014_Session2.html?print-pdf#/ 63/110

Named color map
There are: grayscale, pseudocolor, fire, bluered predefined in PostGIS.

bluered goes from low of blue to pale white to red.
SELECT ST_ColorMap(ST_Union(rast,1),'bluered') As rast_4b
FROM po.chicago_dem_wmerc
 WHERE ST_DWithin(
 ST_Transform(ST_SetSRID(ST_Point(-87.627,41.8819),4326),900913),
 rast::geometry,5000);

http://www.postgis.us/Presentations/PGOpen2014_Session2.html?print-pdf#/ 64/110

Custom color map
You can define mappings yourself

SELECT ST_ColorMap(ST_Union(rast,1),'100% 255 0 0
75% 200 0 0
50% 100 0 0
25% 50 0 0
10% 10 0 0
nv 0 0 0', 'INTERPOLATE') As rast_4b
FROM po.chicago_dem_wmerc
 WHERE ST_DWithin(
 ST_Transform(ST_SetSRID(ST_Point(-87.627,41.8819),4326),900913),
 rast::geometry,5000);

http://www.postgis.us/Presentations/PGOpen2014_Session2.html?print-pdf#/ 65/110

Custom color map
Fixed set of colors snap to nearest percentile

SELECT ST_ColorMap(ST_Union(rast,1),'100% 255 0 0
75% 200 0 0
50% 100 0 0
25% 50 0 0
10% 10 0 0
nv 0 0 0', 'NEAREST') As rast_4b
FROM po.chicago_dem_wmerc
 WHERE ST_DWithin(
 ST_Transform(ST_SetSRID(ST_Point(-87.627,41.8819),4326),900913),
 rast::geometry,5000);

http://www.postgis.us/Presentations/PGOpen2014_Session2.html?print-pdf#/ 66/110

Make 3D linestrings
WITH ref_D AS (SELECT name, way,
 ST_Transform(ST_SetSRID(ST_Point(-87.627,41.8819),4326),900913) As loc
 FROM po.planet_osm_roads
 ORDER BY ST_Transform(
 ST_SetSRID(
 ST_Point(-87.627,41.8819),4326),900913) <-> way LIMIT 5),
 ref AS (SELECT name, way FROM ref_d
 ORDER BY ST_Distance(way,loc))
 SELECT ref.name,
 ST_AsText(
 ST_LineMerge(
 ST_Collect(
 ST_Translate(ST_Force3D((r.gv).geom), 0,0, (r.gv).val)
)
)
) As wktgeom
 FROM
 ref , LATERAL (SELECT ST_Intersection(rast,way) As gv
 FROM po.chicago_dem_wmerc As d
 WHERE ST_Intersects(d.rast, ref.way)) As r
 GROUP BY ref.name;

http://www.postgis.us/Presentations/PGOpen2014_Session2.html?print-pdf#/ 67/110

3D linestring output
 name | wktgeom
------------------------+---
 North State Street | LINESTRING Z (-9754688.09 5143501.29 179,-9754687.4267
9796 5143457.79342028 179,-9754686.69 5143409.47 180,-9754684.13704138 5143347.8
6536781 180,-9754683.17 5143324.53 181) ...
 East Madison Street | LINESTRING Z (-9754312.92 5143334.38 181,-9754328.32 5
143334.22 181,-9754407.28 5143333.33 181,-9754501.17 5143330.48 181,-9754587.69
5143329.8 181,-9754652.86 5143328.67 181,-9754666.75 5143327.67 181,-9754683.17
5143324.53 181)...
 State Street Subway | MULTILINESTRING Z ((-9754692.86 5143480.52 179,-975469
2.09079665 5143457.79342028 179,-9754688.37017403 5143347.86536781 180,-9754680.
91 5143127.45 181),(-9754671.2 5143129.08 181,-9754677.91235681 5143347.86536781
 180,-9754681.28496038 5143457.79342028 179,-9754681.95 5143479.47 179)) ..
 East Washington Street | LINESTRING Z (-9754688.09 5143501.29 179,-9754591.31 5
143501.57 179,-9754538.75 5143500.92 179,-9754504.9 5143501.11 179,-9754410.36 5
143501.83 179,-9754316.66 5143502.34 179,-9754301.88 5143502.49 179,-9754289.33
5143502.58 179,-9754283.02 5143502.6 179) ...
(4 rows)

http://www.postgis.us/Presentations/PGOpen2014_Session2.html?print-pdf#/ 68/110

Exercise: Rasterizing a geometry
Basic ST_AsRaster

SELECT ST_AsPNG(ST_AsRaster(
 ST_Buffer(
 ST_GeomFromText('LINESTRING(50 50,150 150,150 65, 30 20)'),
 10,'join=bevel'),
 200,200,ARRAY['8BUI', '8BUI', '8BUI'],
 ARRAY[118,154,118], ARRAY[0,0,0]));

http://www.postgis.us/Presentations/PGOpen2014_Session2.html?print-pdf#/ 69/110

Exercise: Overlaying geometries on a grid + color
mapping

ST_AsRaster variant 2
WITH cte AS (SELECT row_number() OVER() As rn, way As geom,
 ST_XMax(way) - ST_XMin(way) As width, ST_YMax(way) - ST_YMin(way) As height,
 ST_Extent(way) OVER() As full_ext
 FROM po.planet_osm_polygon
WHERE admin_level='8'),
ref AS (SELECT ST_AsRaster(ST_SetSRID(full_ext, ST_SRID(geom)),
 ((ST_XMax(full_ext) - ST_XMin(full_ext))/
 (ST_YMax(full_ext) - ST_YMin(full_ext))*600)::integer,
 600,ARRAY['8BUI'],
 ARRAY[255], ARRAY[255]) AS rast FROM cte WHERE rn = 1)
SELECT ST_AsPNG(ST_ColorMap(ST_Union(ST_AsRaster(geom, ref.rast,
 ARRAY['8BUI'],
 ARRAY[rn*2], ARRAY[255])), 'pseudocolor'))
FROM cte CROSS JOIN ref;

http://www.postgis.us/Presentations/PGOpen2014_Session2.html?print-pdf#/ 70/110

Raster output of overlay

http://www.postgis.us/Presentations/PGOpen2014_Session2.html?print-pdf#/ 71/110

Vectorizing portions of a raster
Most popular is ST_DumpAsPolygons which returns a set of geomval

(composite consisting of a geometry named geom and a pixel value called
val).

SELECT (g).val, ST_Union((g).geom) As geom
FROM
(SELECT ST_DumpAsPolygons(ST_Clip(rast,loc)) As g
 FROM po.chicago_dem As d
 INNER JOIN
 ST_Transform(
 ST_Buffer(
 ST_SetSRID(ST_Point(-87.627,41.8819),4326)::geography,
 500)::geometry,
 4267) As loc
 ON ST_Intersects(d.rast, loc)) AS f
GROUP BY (g).val;

http://www.postgis.us/Presentations/PGOpen2014_Session2.html?print-pdf#/ 72/110

Topology: Geometries in seat-belts
Geometries are stand-alone selfish creatures.

They only look out for number one.
A plot of land overlaps another.

Does geometry care?
No. C'est la vie

People care. We've got boundaries. My land is not your land. Stay off my
lawn.

Who can bring order to our world?
Topology can.

http://www.postgis.us/Presentations/PGOpen2014_Session2.html?print-pdf#/ 73/110

What is a topology?
Specifically: Network topology

http://www.postgis.us/Presentations/PGOpen2014_Session2.html?print-pdf#/ 74/110

Topology primitives: edges, nodes, and faces
Topology views the world as a neatly ordered network of faces, edges, and
nodes. Via relationships of these primitive elements, we form recognizable

things like parcels, roads, and political boundaries.

http://www.postgis.us/Presentations/PGOpen2014_Session2.html?print-pdf#/ 75/110

What is an edge?
An edge is a linestring that does not overlap other edges. It can only touch

other edges at the end points.

http://www.postgis.us/Presentations/PGOpen2014_Session2.html?print-pdf#/ 76/110

What is a node?
Nodes are start and end points of edges or are isolated points that are not

part of any edge.

http://www.postgis.us/Presentations/PGOpen2014_Session2.html?print-pdf#/ 77/110

What is a face?
A face is a polygon that gets generated when a set of edges form a closed

ring.
In standard PostGIS topology, the polygon is never actually stored, but

computed. Only the minimum bounding rectangle is stored.

http://www.postgis.us/Presentations/PGOpen2014_Session2.html?print-pdf#/ 78/110

Diagram of simple topology

Edges are the numbered linestrings, nodes are the numbered round balls,
and faces are the areas with *. The four faces together can be used to

construct a topogeometry we can call colorado.

http://www.postgis.us/Presentations/PGOpen2014_Session2.html?print-pdf#/ 79/110

How does topology help us?
Ensure correct boundaries
When geometries are simplified shared edges still remain shared
Editing

http://www.postgis.us/Presentations/PGOpen2014_Session2.html?print-pdf#/ 80/110

What is a topogeometry?

http://www.postgis.us/Presentations/PGOpen2014_Session2.html?print-pdf#/ 81/110

A topogeometry is like a geometry, except it has respect for its foundations.
It understands it is not sitting by itself in outerspace. It understands it is

made up of other elements which may be shared by other geometries. It
understands its very definition is the cumulative definition of others.

It's nice to be a regular old geometry sometimes, and topogeometry has got
a cast to make it so. topo::geometry or geometry(topo).

http://www.postgis.us/Presentations/PGOpen2014_Session2.html?print-pdf#/ 82/110

topogeometry is a set of relations
A topogeometry is composed of pointers to topology primitives or other

topogeometries. It is defined via the relations

http://www.postgis.us/Presentations/PGOpen2014_Session2.html?print-pdf#/ 83/110

Let's build a topology of Chicago
With our OSM data

If you haven't already
CREATE EXTENSION postgis_topology;

http://www.postgis.us/Presentations/PGOpen2014_Session2.html?print-pdf#/ 84/110

Create the topology
SELECT CreateTopology('topo_chicago',900913);

You should now have a database schema called topo_chicago with several
tables.

http://www.postgis.us/Presentations/PGOpen2014_Session2.html?print-pdf#/ 85/110

Tables in a topology
topo_chicago has a set of tables you'll find in all topology generated

schemas
edge_data and companion edge view: Holds all the line work that defines
the topological network.
node - defines all the points that connect the edges (only connecting
points are considered) as well as isolated points (isonode) that stand
alone.
face - lists polygons formed by closed line work of edges. The polygon is
not stored, only the minimum bounding box
relation - lists the set of relationships to edges, nodes, faces, and other
layers that define a topogoemetry.

http://www.postgis.us/Presentations/PGOpen2014_Session2.html?print-pdf#/ 86/110

Let's create a political boundaries table from scratch
CREATE TABLE
 po.chicago_boundaries(id serial primary key, name text);
SELECT AddTopoGeometryColumn('topo_chicago', 'po',
 'chicago_boundaries', 'topo', 'POLYGON') As layer_id;

1

http://www.postgis.us/Presentations/PGOpen2014_Session2.html?print-pdf#/ 87/110

Let's populate our boundaries
INSERT INTO po.chicago_boundaries(name, topo)
WITH ref AS (SELECT way As ref
 FROM po.planet_osm_polygon
 WHERE admin_level = '8' AND name = 'Chicago')
SELECT name, toTopoGeom(ST_Union(way), 'topo_chicago', 1)
 FROM (SELECT name, way FROM po.planet_osm_polygon
 WHERE admin_level = '8') AS b
 INNER JOIN ref
ON (ST_Intersects(b.way,ref.ref))
GROUP BY name;

http://www.postgis.us/Presentations/PGOpen2014_Session2.html?print-pdf#/ 88/110

Output topogeometry as geometry
SELECT name, topo::geometry As geom
 FROM po.chicago_boundaries;

http://www.postgis.us/Presentations/PGOpen2014_Session2.html?print-pdf#/ 89/110

Simplify topo boundaries compared to
simplify geometry boundaries

Topos are aware of their shared existence. Edges remain shared.
Geometries are self-centered. They don't care about their neighbors.

http://www.postgis.us/Presentations/PGOpen2014_Session2.html?print-pdf#/ 90/110

Chicago Geometry simplified
They overlap and are not respectful of each other.

SELECT name, ST_Simplify(topo::geometry,1000) As geom
 FROM po.chicago_boundaries;

http://www.postgis.us/Presentations/PGOpen2014_Session2.html?print-pdf#/ 91/110

Chicago TopoGeometry simplified
Edges that were shared are still shared

SELECT name, ST_Simplify(topo,1000) As geom
 FROM po.chicago_boundaries;

http://www.postgis.us/Presentations/PGOpen2014_Session2.html?print-pdf#/ 92/110

pgRouting: Navigating from one place to
another

pgRouting is primarily used for building routing applications. E.g road
directions, biking trail guide etc.

http://www.postgis.us/Presentations/PGOpen2014_Session2.html?print-pdf#/ 93/110

Install binaries
Refer to our quick start guide listed on this page:

http://www.postgis.us/pgopen2014

http://www.postgis.us/pgopen2014

http://www.postgis.us/Presentations/PGOpen2014_Session2.html?print-pdf#/ 94/110

Enable in your database and verify
CREATE EXTENSION pgrouting;
SELECT * FROM pgr_version();

version | tag | build | hash | branch | boost
---------+--------+-------+---------+--------+--------
 2.0.0 | v2.0.0 | 3 | fbbaa2a | master | 1.54.0

http://www.postgis.us/Presentations/PGOpen2014_Session2.html?print-pdf#/ 95/110

Popular tools for making OSM data
routable

osm2pgrouting - not tested on windows.
osm2po - works on any OS with a java VM. Other neat
feature is it comes with its own mini-webserver that reads the .pbf file
directly.

,

osm2pgrouting
http://osm2po.de

pgRouting OSM data with osm2po
We'll demonstrate osm2po since it's more cross-platform

http://pgrouting.org/docs/tools/osm2pgrouting.html
http://osm2po.de/
http://www.bostongis.com/PrinterFriendly.aspx?content_name=pgrouting_osm2po_1

http://www.postgis.us/Presentations/PGOpen2014_Session2.html?print-pdf#/ 96/110

Prepping data for routing with osm2po
Extract osm2po in a folder: we used the 4.8.8 version
Make a copy of the demo.bat or demo.sh and replace with your own path
to pbf
If java is not in your path, you may need to define a path variable at top

http://www.postgis.us/Presentations/PGOpen2014_Session2.html?print-pdf#/ 97/110

Generating sql script for routing
chicago

Your shell-script line should look something like
java -Xmx512m -jar osm2po-core-4.8.8-signed.jar prefix=hh tileSize=x chicago_illinois.osm.pbf

http://www.postgis.us/Presentations/PGOpen2014_Session2.html?print-pdf#/ 98/110

You should now have a folder called hh in your osm2po folder, and should
have an sql file hh_2po_4pgr.sql

Load this up into your database with psql. Note that osm2po loads data in
wgs 84 long lat geometry (4326) so tolerance units for all pgrouting will be in

degrees.

http://www.postgis.us/Presentations/PGOpen2014_Session2.html?print-pdf#/ 99/110

Recreate vertices from source and target
Osm2Po doesn't create a vertices table, but we can create one from the

table it creates. This table is needed by some pgrouting functions
SELECT pgr_createVerticesTable('hh_2po_4pgr', 'geom_way', 'source', 'target')

NOTICE: PROCESSING:
NOTICE: pgr_createVerticesTable('hh_2po_4pgr','geom_way','source','target','true')
NOTICE: Performing checks, pelase wait
NOTICE: Populating public.hh_2po_4pgr_vertices_pgr, please wait...
NOTICE: -----> VERTICES TABLE CREATED WITH 338965 VERTICES
NOTICE: FOR 489747 EDGES
NOTICE: Edges with NULL geometry,source or target: 0
NOTICE: Edges processed: 489747
NOTICE: Vertices table for table public.hh_2po_4pgr is: public.hh_2po_4pgr_vertices_pgr
NOTICE: --

Total query runtime: 42975 ms.

http://www.postgis.us/Presentations/PGOpen2014_Session2.html?print-pdf#/ 100/110

Analyzing your routes
pgr_analyzeGraph looks for dead ends and other anomalies and populates
fields in hh_2po_4pgr_vertices_pgr. Tolerance are in units of your spatial ref

sys. Takes a while
SELECT pgr_analyzeGraph('hh_2po_4pgr', 0.000001,'geom_way',
 'id', 'source', 'target','true');

OK

120,322ms

http://www.postgis.us/Presentations/PGOpen2014_Session2.html?print-pdf#/ 101/110

Using osm2po routing table

http://www.postgis.us/Presentations/PGOpen2014_Session2.html?print-pdf#/ 102/110

Create view with key columns we need
CREATE OR REPLACE VIEW vw_routing
AS
SELECT id, osm_id, osm_name, osm_meta, osm_source_id, osm_target_id,
 clazz, flags, source, target, km, kmh, cost,
 cost as length, reverse_cost, x1,
 y1, x2, y2, geom_way As the_geom
 FROM hh_2po_4pgr;

http://www.postgis.us/Presentations/PGOpen2014_Session2.html?print-pdf#/ 103/110

pgRouting is about going from one node to another
along a path not really about location

So we really can't go from arbitrary point to point, have to go from node to
node. So we found a node using osm2po mini webservice:

http://localhost:8888/Osm2poService

http://www.postgis.us/Presentations/PGOpen2014_Session2.html?print-pdf#/ 104/110

pgr_astar
Shortest Path A-Star function that takes as input:

SQL statement that defines your network or portion of network you want
to inspect
node id of start
node id of end
directed: defaults to true (if your graph has direction)
has_rcost: If your edges have costs in different direction. reverse_cost
must be provided if this is true

http://www.postgis.us/Presentations/PGOpen2014_Session2.html?print-pdf#/ 105/110

Directed route with astar
Output is order of travel: seq, id1: node id, id2 edge id

SELECT *
 FROM pgr_astar('SELECT id, source, target, cost,
 x1,y1,x2,y2, reverse_cost FROM vw_routing',
 159944, 142934, true, true) As r;

 seq | id1 | id2 | cost
-----+--------+--------+--------------
 0 | 159944 | 236443 | 0.0020273041
 1 | 334003 | 482441 | 0.0027647596
 2 | 334007 | 482442 | 0.0010009945
 3 | 334006 | 155460 | 0.0025687038
 4 | 142934 | -1 | 0

http://www.postgis.us/Presentations/PGOpen2014_Session2.html?print-pdf#/ 106/110

Directed route with astar joined with road
One-ways are considered

SELECT r.seq, r.id1 As node,
 s.id As edge, s.osm_name, s.cost, s.km, s.kmh
 FROM pgr_astar('SELECT id, source, target, cost,
 x1,y1,x2,y2, reverse_cost FROM vw_routing',
 159944, 142934, true, true) As r INNER JOIN
 vw_routing AS s ON r.id2 = s.id
 ORDER BY r.seq;

seq | node | edge | osm_name | cost | km | kmh
----+--------+--------+------------------+--------------+-------------+-----
 0 | 159944 | 236443 | West 36th Street | 0.0020273041 | 0.10136521 | 50
 1 | 334003 | 482441 | South 58th Court | 0.0027647596 | 0.13823798 | 50
 2 | 334007 | 482442 | South 58th Court | 0.0010009945 | 0.050049722 | 50
 3 | 334006 | 155460 | West 35th Street | 0.0025687038 | 0.102748156 | 40

http://www.postgis.us/Presentations/PGOpen2014_Session2.html?print-pdf#/ 107/110

Undirected route with astar joined with road
One-ways are ignored

SELECT r.seq, r.id1 As node,
 s.id As edge, s.osm_name, s.cost, s.km, s.kmh
 FROM pgr_astar('SELECT id, source, target, cost,
 x1,y1,x2,y2, reverse_cost FROM vw_routing',
 159944, 142934, false, false) As r INNER JOIN
 vw_routing AS s ON r.id2 = s.id
 ORDER BY r.seq;

 seq | node | edge | osm_name | cost | km | kmh
-----+--------+--------+-------------------+--------------+-------------+-----
 0 | 159944 | 236443 | West 36th Street | 0.0020273041 | 0.10136521 | 50
 1 | 334003 | 236444 | West 36th Street | 0.0020233293 | 0.101166464 | 50
 2 | 333993 | 482429 | South 59th Avenue | 0.0027747066 | 0.13873532 | 50
 3 | 333996 | 482428 | South 59th Avenue | 0.0010170189 | 0.050850946 | 50

http://www.postgis.us/Presentations/PGOpen2014_Session2.html?print-pdf#/ 108/110

Links of Interest
PostGIS
Planet PostGIS

http://postgis.net/
http://planet.postgis.net/

http://www.postgis.us/Presentations/PGOpen2014_Session2.html?print-pdf#/ 109/110

THE END
Thank you. Buy our books http://www.postgis.us

http://www.postgis.us/

http://www.postgis.us/Presentations/PGOpen2014_Session2.html?print-pdf#/ 110/110

The Paragon Logo is copyright Paragon Corporation and may be resized,
made transparent and so forth. It should only be used to refer to Paragon
Corporation.
Many of the raster images used in this presentation were downloaded
from Wikipedia. The ones of Mona Lisa are resized versions of
which is under a public domain license.
The aerial clip is a portion of Massachusetts aerial data loaded in PostGIS
raster format from . This particular clip is
borrowed from the PostGIS documentation which is under a

Images of Chicago: were taken from this
 page and under the respective

licenses of the photographers.
Slide were made using which is MIT Licensed

Mona Lisa

MassGIS 2008/2009 aerial data
Creative

Commons 3.0 Share Alike

http://en.wikipedia.org/wiki/Chicago

RevealJS

http://en.wikipedia.org/wiki/Mona_Lisa
http://www.mass.gov/anf/research-and-tech/it-serv-and-support/application-serv/office-of-geographic-information-massgis/datalayers/colororthos2008.html
http://creativecommons.org/licenses/by-sa/3.0/
http://en.wikipedia.org/wiki/Chicago
https://github.com/hakimel/reveal.js/

