
http://www.postgis.us/Presentations/foss4g_2014_postgis_writing_better_queries.html?print-pdf#/ 1/69

Writing
better

PostGIS queries
with PostGIS 2.1 and PostgreSQL 9.3

Created by Regina Obe

http://www.postgis.us http://www.bostongis.com
http://www.postgresonline.com http://www.paragoncorporation.com

0

http://www.paragoncorporation.com/
http://postgis.net/
http://www.postgis.us/
http://www.postgis.us/
http://www.bostongis.com/
http://www.postgresonline.com/
http://www.paragoncorporation.com/

http://www.postgis.us/Presentations/foss4g_2014_postgis_writing_better_queries.html?print-pdf#/ 2/69

Make sure we have PostGIS and hstore
extensions

CREATE EXTENSION hstore;
CREATE EXTENSION postgis;

http://www.postgis.us/Presentations/foss4g_2014_postgis_writing_better_queries.html?print-pdf#/ 3/69

Download sample data from
OpenStreetMap

wget --progress=dot:mega -O "portland.osm"
"http://www.overpass-api.de/api/xapi?*

[bbox=-122.7298,45.4946,-122.5599,45.5985][@meta]"

http://www.postgis.us/Presentations/foss4g_2014_postgis_writing_better_queries.html?print-pdf#/ 4/69

Load OSM data into PostGIS with
osm2pgsql

osm2pgsql -d foss4g2014 -H localhost -U postgres -P 5443 -S
default.style --hstore-all portland.osm

http://www.postgis.us/Presentations/foss4g_2014_postgis_writing_better_queries.html?print-pdf#/ 5/69

planet_osm tables
You'll end up with tables:

SELECT f_table_name As t, f_geometry_column As gc, srid, type
FROM geometry_columns;

 t | gc | srid | type
--------------------+-----+--------+------------
planet_osm_point | way | 900913 | POINT
planet_osm_line | way | 900913 | LINESTRING
planet_osm_polygon | way | 900913 | GEOMETRY
planet_osm_roads | way | 900913 | LINESTRING
(4 rows)

http://www.postgis.us/Presentations/foss4g_2014_postgis_writing_better_queries.html?print-pdf#/ 6/69

Altering spatial data type of a column
Scenario: You loaded data in Web Mercator, but decide you really need the

measurement accuracy of geography
The long way: Create column with new type, updated the new, drop the old.

http://www.postgis.us/Presentations/foss4g_2014_postgis_writing_better_queries.html?print-pdf#/ 7/69

Quicker: Use ALTER COLUMN
ALTER TABLE planet_osm_polygon
ALTER COLUMN way TYPE geography(MULTIPOLYGON,4326)
USING ST_Transform(ST_Multi(way), 4326);

http://www.postgis.us/Presentations/foss4g_2014_postgis_writing_better_queries.html?print-pdf#/ 8/69

Storing as both geometry and
geography

You may have a database that is heavily used for both proximity and
mapping. So you want both geography and geometry. If you have large

geometries, maintaining two columns might be the best options.

http://www.postgis.us/Presentations/foss4g_2014_postgis_writing_better_queries.html?print-pdf#/ 9/69

Create a new geography column from a geometry
column

ALTER TABLE planet_osm_point ADD geog geography(POINT,4326);
UPDATE planet_osm_point SET geog = ST_Transform(way,4326)::geography;
CREATE INDEX idx_planet_osm_point_geog ON planet_osm_point USING gist (geog);

http://www.postgis.us/Presentations/foss4g_2014_postgis_writing_better_queries.html?print-pdf#/ 10/69

What geography layers do we have?
SELECT f_table_name As t, f_geography_column As gc, srid, type
FROM geography_columns;

 t | gc | srid | type
--------------------+------+------+--------------
 planet_osm_point | geog | 4326 | Point
 planet_osm_polygon | way | 4326 | MultiPolygon

http://www.postgis.us/Presentations/foss4g_2014_postgis_writing_better_queries.html?print-pdf#/ 11/69

Proximity problems: Find the objects
within X distance of a reference object

Which restaurants are within 1KM?

http://www.postgis.us/Presentations/foss4g_2014_postgis_writing_better_queries.html?print-pdf#/ 12/69

SELECT name
FROM
 planet_osm_point CROSS JOIN
 geography(ST_Point(-122.66317,45.5284571)) As loc
WHERE ST_Distance(geog,loc) <= 1*1000 AND tags @> 'amenity=>restaurant'
ORDER BY name;

name

 Alexis Restaurant
 Bellagios Pizza
 Burnside Brewing Co.
 Dixie Tavern
 Doug Fir Lounge
 Frank's Noodle House
 House of Louie
 :

Slow: Use ST_Distance

ST_Distance can't take advantage of indexes, so this solution doesn't scale
well.

http://www.postgis.us/Presentations/foss4g_2014_postgis_writing_better_queries.html?print-pdf#/ 13/69

Can utilize a spatial index

SELECT name
FROM
 planet_osm_point CROSS JOIN
 geography(ST_Point(-122.66317,45.5284571)) As loc
WHERE ST_DWithin(geog, loc, 1*1000) AND tags @> 'amenity=>restaurant'
ORDER BY name;

name

 Alexis Restaurant
 Bellagios Pizza
 Burnside Brewing Co.
 Dixie Tavern
 Doug Fir Lounge
 Frank's Noodle House
 House of Louie
 :

Better: Use ST_DWithin

http://www.postgis.us/Presentations/foss4g_2014_postgis_writing_better_queries.html?print-pdf#/ 14/69

If you just want a count of items, don't order and don't
output the records

SELECT count(1)
FROM
 planet_osm_point CROSS JOIN
 geography(ST_Point(-122.66317,45.5284571)) As loc
WHERE ST_DWithin(geog, loc, 1*1000) AND tags @> 'amenity=>restaurant';

Outputting data (network effects) and ordering are very costly and it often
overshadows the other costs. So if you don't care about the actual data, just

count.

http://www.postgis.us/Presentations/foss4g_2014_postgis_writing_better_queries.html?print-pdf#/ 15/69

ST_Distance vs ST_DWithin
ST_DWithin can use an index, but ST_Distance cannot.

ST_DWithin will generally be faster.

http://www.postgis.us/Presentations/foss4g_2014_postgis_writing_better_queries.html?print-pdf#/ 16/69

Textual Plan
Part of plan showing index

:
-> Index Scan using idx_planet_osm_point_geog on planet_osm_point
 (cost=0.28..8.55 rows=1 width=75)
 (actual time=0.408..3.059 rows=20 loops=1)
Index Cond: (geog && _st_expand(loc.loc, 1000::double precision))
 Filter: ((tags @> '"amenity"=>"restaurant"'::hstore) AND
 (loc.loc && _st_expand(geog, 1000::double precision)) AND
 _st_dwithin(geog, loc.loc, 1000::double precision, true))
 Rows Removed by Filter: 1630

Planning time: 0.353 ms Execution time: 3.242 ms

http://www.postgis.us/Presentations/foss4g_2014_postgis_writing_better_queries.html?print-pdf#/ 17/69

Query geometry and hstore together
How do you get the planner to use an index for both?

http://www.postgis.us/Presentations/foss4g_2014_postgis_writing_better_queries.html?print-pdf#/ 18/69

Common approach: Create two GiST indexes
CREATE INDEX idx_planet_osm_point_tags ON planet_osm_point USING gist (tags);
CREATE INDEX idx_planet_osm_point_geog ON planet_osm_point USING gist (geog);

The planner might use both utilizing a bitmapscan. The planner might just
choose one over the other.

http://www.postgis.us/Presentations/foss4g_2014_postgis_writing_better_queries.html?print-pdf#/ 19/69

Another approach: Compound GIST index?
You can combine geometry/geography and hstore in same GiST index, but

its fatter, but planner is more likely to leverage both parts.
DROP INDEX IF EXISTS idx_planet_osm_point_geog;
DROP INDEX IF EXISTS idx_planet_osm_point_tags;
CREATE INDEX idx_planet_osm_point_geog_tags
 ON planet_osm_point USING gist (geog, tags);

http://www.postgis.us/Presentations/foss4g_2014_postgis_writing_better_queries.html?print-pdf#/ 20/69

Revisit our example of restaurants within 1KM using compound index.
Compare the plan .to geometry index plan

SELECT name
 FROM planet_osm_point CROSS JOIN
 geography(ST_Point(-122.66317,45.5284571)) As loc
 WHERE ST_DWithin(geog,loc, 1*1000) AND
 tags @> 'amenity=>restaurant'
 ORDER BY name;

http://www.postgis.us/Presentations/foss4g_2014_postgis_writing_better_queries.html?print-pdf#/ 21/69

Text Explain with compound index
Note the geography expand and tags check are used in the index condition.

:
 Index Cond: ((geog && _st_expand(loc.loc, 1000::double precision)) AND
 (tags @> '"amenity"=>"restaurant"'::hstore>))
 Filter: ((loc.loc && _st_expand(geog, 1000::double precision)) AND
 _st_dwithin(geog, loc.loc, 1000::double precision, true))
 Rows Removed by Filter: 17

Planning time: 0.342 ms Execution time: 1.424 ms
It's twice as fast as using the single geography index (not considering

network effects).

http://www.postgis.us/Presentations/foss4g_2014_postgis_writing_better_queries.html?print-pdf#/ 22/69

What if your query involves only the second column in your compound index
Example: All Mexican restaurants

SELECT name
 FROM planet_osm_point
 WHERE tags @> 'amenity=>restaurant, cuisine=>mexican'
ORDER BY name;

http://www.postgis.us/Presentations/foss4g_2014_postgis_writing_better_queries.html?print-pdf#/ 23/69

Compound gist indexes can also service queries that only involve one
element in the index, even if the element is second column in index.

http://www.postgis.us/Presentations/foss4g_2014_postgis_writing_better_queries.html?print-pdf#/ 24/69

Partial Explain using a compound index when you are only querying one column
Only querying the tags column, compound index still kicks in

:
Recheck Cond: (tags @> '"amenity"=>"restaurant", "cuisine"=>"mexican"'::hstore)
Rows Removed by Index Recheck: 4
Heap Blocks: exact=27
-> Bitmap Index Scan on idx_planet_osm_point_geog_tags
:
 Index Cond: (tags @> '"amenity"=>"restaurant", "cuisine"=>"mexican"'::hstore)

Planning time: 0.140 ms
Execution time: 1.168 ms

http://www.postgis.us/Presentations/foss4g_2014_postgis_writing_better_queries.html?print-pdf#/ 25/69

Same query using Single tags index
:
 Recheck Cond: (tags @> '"amenity"=>"restaurant", "cuisine"=>"mexican"'::hstore)
 Rows Removed by Index Recheck: 4
 Heap Blocks: exact=27
 -> Bitmap Index Scan on idx_planet_osm_point_tags
 :
 Index Cond: (tags @> '"amenity"=>"restaurant", "cuisine"=>"mexican"'::hstore)

Planning time: 0.138 ms
Execution time: 1.188 ms

Using the compound index and single tags index perform about the same
for this.

http://www.postgis.us/Presentations/foss4g_2014_postgis_writing_better_queries.html?print-pdf#/ 26/69

Find all things within a certain distance from me sorted
by distance

Use ST_DWithin in the WHERE and ST_Distance in column output.

http://www.postgis.us/Presentations/foss4g_2014_postgis_writing_better_queries.html?print-pdf#/ 27/69

Closest 5 Mexican restaurants within 2km sorted by
distance

SELECT name, ST_Distance(geog,loc) As dist
FROM planet_osm_point
 CROSS JOIN geography(ST_Point(-122.66317,45.5284571)) As loc
WHERE tags @> 'amenity=>restaurant, cuisine=>mexican'::hstore
 AND ST_DWithin(geog,loc,2*1000)
ORDER BY dist
LIMIT 5;

 name | dist
-----------------------------------+----------------
 Aztec Willie & Joey Rose Taqueria | 1254.126992
 Robo Taco | 1267.277465181
 Santeria | 1322.559970998
 Burrito Bar | 1353.30868868
 Los Gorditos Perla | 1448.850095646

http://www.postgis.us/Presentations/foss4g_2014_postgis_writing_better_queries.html?print-pdf#/ 28/69

Web Mercator for proximity analysis
Web Mercator is the commonly used projection for web mapping (OSM,

Google, Bing, MapQuest). It preserves angles and shapes of small objects,
but distorts size and shape of large objects. Poles are greatly distorted. As

far as distance goes, distances are far from accurate. If you at the poles, you
are better off using a different projection.

http://www.postgis.us/Presentations/foss4g_2014_postgis_writing_better_queries.html?print-pdf#/ 29/69

Restaurants within 1km in Web Mercator

http://www.postgis.us/Presentations/foss4g_2014_postgis_writing_better_queries.html?print-pdf#/ 30/69

SELECT name
FROM planet_osm_point CROSS JOIN
 ST_Transform(
 ST_SetSRID(ST_Point(-122.66317,45.5284571),4326),900913
) As loc
 WHERE
 tags @> 'amenity=>restaurant'::hstore
 AND ST_DWithin(way,loc, 1*1000)
ORDER BY name;

 name

Burnside Brewing Co.

Web Mercator alone: Not good
BAD: 1 km is not REALLY 1 km

Depends where in world you are how bad this is.
This get's worse the further you are from the equator.

Recall we got more answers with geography ST_DWithin

http://www.postgis.us/Presentations/foss4g_2014_postgis_writing_better_queries.html?print-pdf#/ 31/69

SELECT name
FROM planet_osm_point CROSS JOIN
 geography(ST_Point(-122.66317,45.5284571)) As loc
 WHERE ST_Expand(ST_Transform(loc::geometry,900913),2*1000) && way
 AND ST_DWithin(ST_Transform(way,4326)::geography,loc,1*1000)
 AND tags @> 'amenity=>restaurant'
ORDER BY name ;

 name

 Alexis Restaurant
 Bellagios Pizza
 Burnside Brewing Co.
 Dixie Tavern
:
 Nicholas Restaurant

Approach 1: ST_DWithin with Web Mercator
Over-shoot by at least twice

Then do a true distance check

Now same answers as geography

http://www.postgis.us/Presentations/foss4g_2014_postgis_writing_better_queries.html?print-pdf#/ 32/69

CREATE INDEX idx_planet_osm_point_way_geog_tags
 ON planet_osm_point
 USING gist(geography(ST_Transform(way,4326)), tags);

SELECT name
FROM planet_osm_point CROSS JOIN
 geography(ST_Point(-122.66317,45.5284571)) As loc
 WHERE ST_DWithin(ST_Transform(way,4326)::geography,loc,1*1000)
 AND tags @> 'amenity=>restaurant'
ORDER BY name ;

Approach 2: ST_DWithin with web mercator
Use a geography functional index

Then you can skip the ST_Expand call.

Same answer shorter syntax, but may not perform well with big geometries.

http://www.postgis.us/Presentations/foss4g_2014_postgis_writing_better_queries.html?print-pdf#/ 33/69

SELECT name
FROM planet_osm_point CROSS JOIN
 geography(ST_Point(-122.66317,45.5284571)) As loc
 WHERE ST_Intersects(way,
 ST_Transform(ST_Buffer(loc,1*1000)::geometry,
 900913))
 AND tags @> 'amenity=>restaurant'
ORDER BY name ;

Approach 3: Use a mutant geography/mercator buffer
and use ST_Intersects

Warning YMMV. Not guaranteed to be right like the other especially for non-
points.

http://www.postgis.us/Presentations/foss4g_2014_postgis_writing_better_queries.html?print-pdf#/ 34/69

Finding the N-closest things to me
The top 5 restaurants closest to my location

http://www.postgis.us/Presentations/foss4g_2014_postgis_writing_better_queries.html?print-pdf#/ 35/69

Brute-Force: Find N-closest things
WITH loc AS (SELECT ST_Point(-122.66317,45.5284571)::geography As loc)
SELECT name, ST_Distance(geog, loc) As dist
 FROM planet_osm_point CROSS JOIN loc
 WHERE name > ''
ORDER By dist
LIMIT 5;

Problem: ST_Distance can't use an index so solution doesn't scale. Will be
really slow for large numbers of objects.

Total runtime: 23.768 ms

http://www.postgis.us/Presentations/foss4g_2014_postgis_writing_better_queries.html?print-pdf#/ 36/69

How to use a spatial index to solve N-
closest things problem?

Use PostGIS KNN operators
Based on geometry bounding box, NOT the geometry itself

<-> centroid box distance
<#> box distance

Index must be against a geometry constant in query and operator only uses
index when used in ORDER BY clause.

http://www.postgis.us/Presentations/foss4g_2014_postgis_writing_better_queries.html?print-pdf#/ 37/69

WITH loc AS (SELECT
 ST_Transform(ST_SetSRID(
 ST_Point(-122.66317,45.5284571),4326),
 900913) As loc) ,
s1 AS (SELECT name, ST_Distance(ST_Transform(way,4326)::geography,
 ST_Transform(loc,4326)::geography
) As dist
 FROM planet_osm_point CROSS JOIN loc
 WHERE name > ''
ORDER BY way <-> (SELECT loc FROM loc)
LIMIT 100)
SELECT name, dist
FROM s1
ORDER BY dist LIMIT 5;

Solve N-closest things with a spatial index
Remember KNN gives bounding box distance, not true distance, so we

need to use a CTE to force materialize of our sample set, and then do a true
distance sort. We also use a CTE to avoid repeating our location coords.

 name | dist
-------------------------------------+---------------
 Anzen | 148.447253838
 Northeast Martin Luther King & Hoyt | 159.138214466
 Convention Center | 193.226544998
 Convention Center | 196.543209603
 Northeast Oregon & Grand | 209.305288106

http://www.postgis.us/Presentations/foss4g_2014_postgis_writing_better_queries.html?print-pdf#/ 38/69

KNN Explain index portion
:
 -> Index Scan using planet_osm_point_index on planet_osm_point
 :
 Order By: (way <-> $1) Filter: (name > ''::text)
 Rows Removed by Filter: 836
 Buffers: shared hit=876
 -> CTE Scan on loc loc_1 (cost=0.00..0.02 rows=1 width=32)
 :
 Sort Key: s1.dist
 Sort Method: top-N heapsort Memory: 25kB

Total runtime: 4.968 ms

http://www.postgis.us/Presentations/foss4g_2014_postgis_writing_better_queries.html?print-pdf#/ 39/69

KNN with just point data we can do better
If you have your geometry in a measure preserving or more or less sort

preserving spatial reference system, you can skip the first limit. Web
mercator is not measure preserving, but for KNN sorting its pretty decent.

http://www.postgis.us/Presentations/foss4g_2014_postgis_writing_better_queries.html?print-pdf#/ 40/69

WITH loc AS (SELECT
 ST_Transform(ST_SetSRID(
 ST_Point(-122.66317,45.5284571),4326),
 900913) As loc)
SELECT name, ST_Distance(way, loc) As goofy_dist,
 ST_Distance(ST_Transform(way,4326)::geography,
 ST_Transform(loc,4326)::geography
) As true_dist
 FROM planet_osm_point CROSS JOIN loc
 WHERE name > ''
ORDER BY way <-> (SELECT loc FROM loc)
LIMIT 5;

KNN with Web Mecator, no true distance check
Distance no good, but relative distances are

The answer is much faster and query shorter.

 name | goofy_dist | true_dist
-------------------------------------+------------------+---------------
 Anzen | 211.538084278065 | 148.447253838
 Northeast Martin Luther King & Hoyt | 227.175763100742 | 159.138214466
 Convention Center | 276.141895004035 | 193.226544998
 Convention Center | 280.885631307582 | 196.543209603
 Northeast Oregon & Grand | 298.271287716346 | 209.305288106
(5 rows)

Wow ordering is same as , so though the distances are
skewed relative point distance ordering seems to be maintained at least for

around Portland and performance is much better.

KNN with post-check

Total runtime: 1.662 ms

http://www.postgis.us/Presentations/foss4g_2014_postgis_writing_better_queries.html?print-pdf#/ 41/69

No KNN operators for geography type
but, you can piggy back on geometry

http://www.postgis.us/Presentations/foss4g_2014_postgis_writing_better_queries.html?print-pdf#/ 42/69

We could in theory use geometry with geography (and utilize single index)
with a super wacky index

CREATE INDEX idx_planet_osm_point_geog_geom_tags
 ON planet_osm_point
 USING gist
 (geog, geometry(geog), tags);

WITH loc AS (SELECT ST_Point(-122.66317,45.5284571)::geography As loc),
 pot AS (SELECT name, ST_Distance(geog, loc) As dist
 FROM planet_osm_point CROSS JOIN loc
 WHERE name > ''
ORDER BY geog::geometry <-> (SELECT loc FROM loc)::geometry
LIMIT 100
)
SELECT *
FROM pot ORDER By dist LIMIT 5;

 name | dist
-------------------------------------+---------------
 Anzen | 148.447253838
 Northeast Martin Luther King & Hoyt | 159.138214467
 Convention Center | 193.226544996
 Convention Center | 196.543209601
 Northeast Oregon & Grand | 209.305288105
(5 rows)

http://www.postgis.us/Presentations/foss4g_2014_postgis_writing_better_queries.html?print-pdf#/ 43/69

KNN GIST geography hack plan
:
 -> Index Scan using idx_planet_osm_point_geog_geom_tags on planet_osm_point
(cost=0.28..3533.26 rows=2331 width=75) (actual time=0.401..2.205 rows=100 loops=1)
 Order By: ((geog)::geometry <-> ($1)::geometry)
 Filter: (name > ''::text)
 Rows Removed by Filter: 785

Total runtime: 3.903 ms

http://www.postgis.us/Presentations/foss4g_2014_postgis_writing_better_queries.html?print-pdf#/ 44/69

ALTER TABLE planet_osm_point ADD geom_4326 geometry(POINT,4326);
 UPDATE planet_osm_point SET geom_4326 = geog::geometry;

WITH loc AS (SELECT ST_SetSRID(
 ST_Point(-122.66317,45.5284571), 4326) As loc)
 SELECT name, ST_Distance(geom_4326, loc) As dist_deg
 , ST_Distance(geom_4326::geography,loc::geography) As true_dist
 FROM planet_osm_point CROSS JOIN loc
 WHERE name > ''
 ORDER BY geom_4326 <-> (SELECT loc FROM loc)
 LIMIT 5;

KNN in geometry 4326 (Platte Carree) is okay but
generally worse than Mercator

 name | dist_deg | true_dist
------------------------------------+---------------------+------------
Northeast Martin Luther King & Hoyt | 0.0017368150805678 | 159.1382144
Convention Center | 0.00185370925463961 | 193.2265449
Convention Center | 0.00188205346321126 | 196.5432096
Anzen | 0.001900257921027 | 148.4472538
Spirit of '77 | 0.00245076555336035 | 236.9106835

Different from , but not super horrible. Anzen is badly
sorted.

Geography KNN hack

http://www.postgis.us/Presentations/foss4g_2014_postgis_writing_better_queries.html?print-pdf#/ 45/69

In order for the KNN operators to use a spatial index, one of the geometries
needs to remain a constant in the query. This makes it difficult to use where

you interested in more than one location.

http://www.postgis.us/Presentations/foss4g_2014_postgis_writing_better_queries.html?print-pdf#/ 46/69

How to trick KNN to work with non-constants
Use Case: I want to find the 2 closest transportation stops to my set of

locations.

http://www.postgis.us/Presentations/foss4g_2014_postgis_writing_better_queries.html?print-pdf#/ 47/69

LATERAL and KNN
Remember KNN one geometry has to be constant for index to be used.

What if for each record we need more than one answer?
Use LATERAL

http://www.postgis.us/Presentations/foss4g_2014_postgis_writing_better_queries.html?print-pdf#/ 48/69

What are the 2 Closest public transportation to each plade
LATERAL + KNN

SELECT p.name As place, pubt.name As transport
FROM
 planet_osm_point As p
 CROSS JOIN
 LATERAL(
 SELECT name
 FROM planet_osm_point As t
 WHERE tags ? 'public_transport'
 ORDER BY p.way <-> t.way ASC LIMIT 2) As pubt
 WHERE tags @>
 'amenity=>restaurant, cuisine=>japanese'::hstore;

http://www.postgis.us/Presentations/foss4g_2014_postgis_writing_better_queries.html?print-pdf#/ 49/69

Segmentize a Linestring in Geography
New PostGIS 2.1 ST_Segmentize(geography) can create great circles

http://www.postgis.us/Presentations/foss4g_2014_postgis_writing_better_queries.html?print-pdf#/ 50/69

Segmentize in geography output as geometry wkt
SELECT ST_AsText(
 ST_Segmentize('LINESTRING(-118.4079 33.9434, 2.5559 49.0083)'::geography,
 10000));

LINESTRING(-118.4079 33.9434,-118.365191634689 33.9946750650617,
 -118.322351004015 34.0460320153076,
 ...,2.48756947085441 49.0516183725212,2.5559 49.0083)

http://www.postgis.us/Presentations/foss4g_2014_postgis_writing_better_queries.html?print-pdf#/ 51/69

Segmentize and output as Google encoded line
PostGIS 2.2 we have ST_AsEncodedPolyline useful for

 and use in Leaflet. ST_LineFromEncodedPolyline for getting back a
geometry.

drawing on google
maps

SELECT ST_AsEncodedPolyline(
 ST_Segmentize(
 'LINESTRING(-118.4079 33.9434, 2.5559 49.0083)'::geography,
 10000)::geometry,
 4);

gqdnEjpuqUo_I}iG}_IwjGo`IqkG_aImlGoaIgmG..~mGskLvmGajL

http://developers.google.com/maps/documentation/utilities/polylinealgorithm

http://www.postgis.us/Presentations/foss4g_2014_postgis_writing_better_queries.html?print-pdf#/ 52/69

Geography segmentize vs. Geometry segmentize on a
map

From BoundlessGeo docs

http://suite.opengeo.org/4.1/dataadmin/pgBasics/geography.html

http://www.postgis.us/Presentations/foss4g_2014_postgis_writing_better_queries.html?print-pdf#/ 53/69

Lessons learned for
geography and

geometry
hstore works well with PostGIS
Use ST_DWithin (not ST_Distance) for indexable distance checking
Geography doesn't support KNN
compound gist indexes can replace two separate gist indexes and often
performs better, but experiment
Web mercator is not so good for distance checking but pretty good for
KNN point distance
Use geography for accurate measurement
Limitations in each type can be compensated by the other to some extent
LATERAL with KNN operators are a really good combination

http://www.postgis.us/Presentations/foss4g_2014_postgis_writing_better_queries.html?print-pdf#/ 54/69

PostGIS Raster
specific lessons

http://www.postgis.us/Presentations/foss4g_2014_postgis_writing_better_queries.html?print-pdf#/ 55/69

Preamble: Loading the
data

http://www.postgis.us/Presentations/foss4g_2014_postgis_writing_better_queries.html?print-pdf#/ 56/69

First we need raster data
http://www.oregon.gov/DAS/CIO/GEO/pages/alphalist.aspx
http://www.oregon.gov/DAS/CIO/GEO/pages/alphalist.aspx
DEMS:
Aerial Imagery: .
wget ftp://159.121.106.159/imagery/DOQ_NAPP_2/45122/e/*

rawdems: 45122E6
aerial imagery multnomah county

http://www.oregon.gov/DAS/CIO/GEO/pages/alphalist.aspx
ftp://ftp.gis.oregon.gov/elevation/DEM/baseline97/rawdems
ftp://ftp.gis.oregon.gov/elevation/DEM/baseline97/rawdems/45122/e/5122e6dg.zip
ftp://ftp.gis.oregon.gov/imagery/CCM2009/multnomah-20091002.zip

http://www.postgis.us/Presentations/foss4g_2014_postgis_writing_better_queries.html?print-pdf#/ 57/69

Load raster elevation data
export PGHOST=localhost
export PGPORT=5444
export PGPASSWORD=whatever
raster2pgsql -s 26710 -I -e -F -C -Y -t auto 5122E6DG portland_elev \
 | psql -U postgres -d presentation

http://www.postgis.us/Presentations/foss4g_2014_postgis_writing_better_queries.html?print-pdf#/ 58/69

Load aerial
gdal_translate ortho_1-1_1n_s_or051_2009_1.sid \
 -of JPEG -outsize 25% 25% portland.jpg

raster2pgsql -s 26710 -I -e -F -C -Y -t auto portland.jpg portland_aer \
 | psql -U postgres -d presentation

http://www.postgis.us/Presentations/foss4g_2014_postgis_writing_better_queries.html?print-pdf#/ 59/69

What raster tables we have?
SELECT r_table_name As tbl, r_raster_column As col, srid,
 scale_x As sx, scale_y As sy,
 blocksize_x, blocksize_y, pixel_types As pt
 FROM raster_columns
 where r_table_name = 'portland_elev';

 tbl | col | srid | sx | sy | blocksize_x | blocksize_y | pt
---------------+------+-------+----+-----+-------------+-------------+---------
 portland_elev | rast | 26710 | 30 | -30 | 65 | 93 | {16BSI}

http://www.postgis.us/Presentations/foss4g_2014_postgis_writing_better_queries.html?print-pdf#/ 60/69

Carving out an area of interest
This is the first step you should do for any raster analysis involving multiple

pixels.

http://www.postgis.us/Presentations/foss4g_2014_postgis_writing_better_queries.html?print-pdf#/ 61/69

Naive User: Carving out an area of interest
Unions tiles first and then clips, or doesn't clip at all.

SELECT ST_Clip(ST_Union(rast),loc)
FROM portland_aer INNER JOIN
 ST_Expand(ST_Transform(
 ST_SetSRID(
 ST_Point(-122.66226,45.53007),4326),2992),600) As loc
 ON ST_Intersects(rast, loc);

This is often orders of magnitude more work than experienced way of
clipping first and then unioning because union has more pixels to deal with.

http://www.postgis.us/Presentations/foss4g_2014_postgis_writing_better_queries.html?print-pdf#/ 62/69

Experienced User: Carving out an area of interest
Clips first and then unions the clippings.

SELECT ST_Union(ST_Clip(rast,loc))
FROM portland_aer INNER JOIN
 ST_Expand(ST_Transform(
 ST_SetSRID(
 ST_Point(-122.66226,45.53007),4326),2992),600) As loc
 ON ST_Intersects(rast, loc);

Clippling is a much faster operation than unioning large areas.

http://www.postgis.us/Presentations/foss4g_2014_postgis_writing_better_queries.html?print-pdf#/ 63/69

Using ST_Resize for proportionate scaling
ST_Resize is finicky. If you need pixels, cast your values to integers

otherwise you'll get some surprises, if you want to do by percentage, use
float lower than 1 or text '50%'.

http://www.postgis.us/Presentations/foss4g_2014_postgis_writing_better_queries.html?print-pdf#/ 64/69

Inexperienced raster user tries to resize
SELECT ST_Resize(rast,300,
 (ST_Height(rast)*1.00/ST_Width(rast)*300))
 FROM (SELECT ST_Union(ST_Clip(rast,loc)) As rast
FROM portland_aerc INNER JOIN
 ST_Expand(ST_Transform(
 ST_SetSRID(
 ST_Point(-122.663,45.53007),4326),26710),600*0.35) As loc
 ON ST_Intersects(rast, loc)) As f;

ERROR: Percentages must be a value greater than zero and less than or
equal to one, e.g. 0.5 for 50%

http://www.postgis.us/Presentations/foss4g_2014_postgis_writing_better_queries.html?print-pdf#/ 65/69

Experienced raster user successfully resizes
Casts to integer first and gets a pretty picture.

SELECT ST_Resize(rast,300,
 (ST_Height(rast)*1.00/ST_Width(rast)*300)::int)
 FROM (SELECT ST_Union(ST_Clip(rast,loc)) As rast
FROM portland_aerc INNER JOIN
 ST_Expand(ST_Transform(
 ST_SetSRID(
 ST_Point(-122.663,45.53007),4326),26710),600*0.35) As loc
 ON ST_Intersects(rast, loc)) As f;

http://www.postgis.us/Presentations/foss4g_2014_postgis_writing_better_queries.html?print-pdf#/ 66/69

Transform your location not your data
What is the elevation at a point?

SELECT ST_Value(rast,1, loc)
FROM portland_elev
INNER JOIN ST_Transform(
ST_SetSRID(
 ST_Point(-122.66226,45.53007),4326),26710) As loc
ON ST_Intersects(rast,loc);

33

http://www.postgis.us/Presentations/foss4g_2014_postgis_writing_better_queries.html?print-pdf#/ 67/69

Verify index used

http://www.postgis.us/Presentations/foss4g_2014_postgis_writing_better_queries.html?print-pdf#/ 68/69

Raster lessons learned
Reproject your area of interest not your raster.
Clip first before doing other raster operations like ST_Union,
ST_SummaryStats, and ST_Resize
Do an explain plan to verify indexes are used

http://www.postgis.us/Presentations/foss4g_2014_postgis_writing_better_queries.html?print-pdf#/ 69/69

FIN
Thank you. Buy our books! http://www.postgis.us

http://www.postgis.us/

