PostGIS 2.0 3D and Raster
support enhancements

Regina Obe and Leo Hsu

£




PostGIS goes 3D
New In PostGIS 2.0

Polyhedral Surfaces and TINS

Affine Transform support for all 3D

ST AsGML, ST GeomFromGML for 3D
Polyhedral and TINS

New 3D relationship /measurement functions
currently work for all 3D except for TINS —

ST 3DDistance, ST 3DDWithin,
ST 3DIntersects,
ST 3DClosestPoint, ST 3DLongestLine,

ST 3DShortestLine,
ST 3DMaxDistance



3D Geometry
Polyhedral Surface

CREATE TABLE test3d(gid SERIAL PRIMARY KEY, geom geometry);
INSERT INTO test3d(geom)

VALUES ('POLYHEDRALSURFACE (

(¢(0 0 0,0 0 5,0 15 5,0 15 0, 0 0 0)),

((0 0 0,0 15 0,10 15 0,10 O O, O O 0Q)),

(¢<0 0 0,10 0 0,10 O 5,0 O 5, 0 0 0)),

((10 0 0,10 15 0,10 15 5,10 0 5, 10 0O 0)),

((0 15 0,0 15 5,10 15 5,10 15 O,

0O 15 0)))'::geometry
) ;



3D Geometry
Triangular Irregular Network (TIN)

INSERT INTO test3d(geom)
VALUES ('"TIN(((1 2 3,4 5 6,7 8 9,1 2 3)),
((10 11 12,13 14 15,16 17 18,10 11 12)),
((19 20 21,22 23 24,25 26 27,19 20 21)))'::geometry)



3D Geometry
ST _AsGML

SELECT gid, ST AsGML (3, geom) As ogml FROM test3d;

-— result -

1| <gml:PolyhedralSurface><gml:polygonPatches>
<gml:PolygonPatch>...</gml:PolyhedralSurface>

2|<gml:Tin><gml:trianglePatches>
<gml:Triangle>...</gml:Triangle>...

</gml:trianglePatches></gml:Tin>



PostGIS goes 3D
Open Source Desktop Viewing

* None yet, but GvSig upcoming version will have at least 3D support to view
simple 3D (not TINS/Polyhedral). With ST_3DShortestLine and Geometry
Dump tricks can get to display Polyhedral Surfaces. Using PostGIS Affine
Transform functions e.g ST _Affine*, ST_Rotate*, ST Translate — can move

TINS/Polyhedral Surfaces and other 3D geometries

« Snapshots from Nicklas Avén’s PostGIS post:

With associated SQL;:

e
4

.
!"
/
‘1
/
/
J
/
g
J
/
,



PostGIS 2.0 /PostgreSQL
3D Use Case

Resource Management
Arrival 3D (new venture):
Collaboration with Network Optics Engineer and VRML/X3D Expert.

Web-based PHP/JQuery/X3D

« X3D scenes autogenerated from database objects viewed with BS
Contact X3D web-viewer

» PostgreSQL 9.0 resource repo_sitoE)y with LTree for managing resource
node relationships / incorporating PostGIS for more analytics (right now
just 3D resource node points and a PostgreSQL inventory model server
to place the models centered at the nodes)

- Cataloging cable paths, summaries of terminations etc., Closest point for
determining optimal paths.

» Integration with existing Telecom Provisioning and Alarm Systems



ostGIS / PostgreSQL 3D
Use Case

e S
Q% 7
¥
EMME FIRD FILTER
Object Files and Manuals

shelf

Calumn test file: New column

Circuit Order: dataconni T -2 : — = 5
telvent test demo: New structure - - adc_dsx3_24pt_in_tan
Grounding Audit 9-1-20028; ground bar - )

Liebert blower user manual: liebert_blow
Grounding Proposal: ground bar

Download Upload
Project Files 1 Rasults
FMA 154: FMA 154 LAC2 Power MOP

Download ' Upload

Room Details

building 600 W 7 > floor T > room LAD2

Details J Pos /Raot

Connections

Unis
E posImion C ROTATION
* pos. 0| -xrot:
¥ pos. iyt
zpos 'zt O view Mode @ Tree () Search
+. & O & | X Fbuilding: 600 W 7

T — - EHfloar: 1

oom: Battery
oom: Collocation
oom: Electrical
EHroom: LAQZ
—aisle: 0109
aisle: 0110
aisle: 0111
aisle: 0112
aisle: 0113

aisle: 0114




Filtering Objects on the fly




PostGIS 2.0
Raster

For more information:
http://www.postgis.org/documentation/manual-svn/RT _reference.html

Key Features

- Georeferenced rasters in the database uses GIST index like Geometry

* New data type called “raster” — one row = raster tile,
One table = raster coverage

» Python Loader utilities built on GDAL — can load in any kind of raster
and bulk load many raster files

* Intersections, Intersects with Geometry data

» Extrude raster regions as geometry

* Ability to create pyramid (overview) tables on load

» Analysis — do averaging of pixel ranges in areas, extrude individual pixels

« Can export raster data to any raster formats supported by GDAL

* In place edit on rasters and ability to create new rasters

 Single band MapAlgebra, just completed this week.

» Rendering tools already available and undergoing fine-tuning



PostGIS 2.0 Raster
Load Data Basic

This generates an sql file that will load all the jpegs in current folder into a new table called
aerials.boston (Massachusetts State Plane Meters (26986)), with each raster record
100x100 pixels width / height. The —F will create a column called filename in the table

which will list

The jpeg file each raster record tile came from.
The —1 will create a gist index on convex hull of the raster.

python raster2pgsgl.py -r *.jpg \
-t aerials.boston -s 26986 -k 100x100 \
-F -I -0 aerials.sql

This runs the script loading the data into mygisdb

psgl —-d mygisdb —f aerials.sgl



PostGIS 2.0 Raster
Raster Overviews (aka Pyramid)

These are lower resolution raster tables of your primary tables. These are registered in a table
called: raster overviews and created using the loader with —| level switch

It works kind of like this: (assuming all you set your overviews

as same block size as your regular)

oV = 4
~ n/24
records

oV = 2
~ n/4 records

Your raster data say n
records broken up as
100x100 (same as ov = 1)




PostGIS 2.0 Raster
Load Data Overview (Pyramid)

This generates an sql file that will load all the jpegs in current folder into a new table called
aerials.02_boston (Massachusetts State Plane Meters (26986)) for our table

aerials.boston, with each raster record

100x100 pixels width / height but lower res.

The —F will create a column called filename in the table

which will list

The jpeg file each raster record tile came from.

The -1 will create an overview table for aerials.boston with ov level (in this case 4)

Note: The table will be called aerials.o 4 boston (not aerials.boston), but will be
Registered in raster overviews table and associated with aerials.boston

python raster2pgsgl.py -r *.jpg \
-t aerials.boston -s 26986 -1 4 -k 100x100 \
-F -I -0 aerials overview4.sql

This runs the script loading the data into mygisdb

psgl —-d mygisdb —-f aerials overviewd.sqgl



PostGIS 2.0 Raster
Regular to Overviews

Overviews are good for zoom out and also doing faster but less high res calculations:
For our small sample:

—-—-result: 845 records

SELECT COUNT (*) FROM aerials.o 4 boston;
-—-result: 3,125 records

SELECT COUNT (*) FROM aerials.o 2 boston;
--result: 20,000 records

SELECT COUNT (*) FROM aerials.boston;



PostGIS 2.0 Raster
Intersects with geometry

How many parcels intersect our loaded raster tiles

SELECT COUNT(DISTINCT p.map_id)
from massgis.parcels_boston As p INNER JOIN aerials.boston As r
ON ST _Intersects(p.geom, r.rast);



PostGIS 2.0 Raster
Intersection with geometry

Pick a parcel /| show average pixel value —
faster to work with lower res but less accurate

-- band 3 average for overview - (avg pixval: 89.12 - 991 ms)

SELECT SUM(ST Area((gv).geom)* (gv).val)/SUM(ST Area((gv).geom))

FROM (
SELECT ST Intersection(r.rast,3, p.geom) As gv
FROM massgis.parcels boston As p INNER JOIN aerials.o 4 boston As r
ON ST Intersects(p.geom, r.rast)

WHERE p.map id = '2010306000') As foo;

-- band 3 average for overview - (avg pixval: 136.7 — 3 secs)

SELECT SUM(ST Area((gv).geom)* (gv) .val)/SUM(ST Area((gv) .geom))

FROM (
SELECT ST Intersection(r.rast,3, p.geom) As gv
FROM massgis.parcels boston As p INNER JOIN aerials.o 2 boston As r
ON ST Intersects(p.geom, r.rast)

WHERE p.map id = '2010306000") As foo;

-- band 3 average for full - (avg pixval: 137.8 -- 12 secs)

SELECT SUM(ST_Area((gV).geom)*(gv).val)/SUM(ST_Area((gv).geom))

FROM (
SELECT ST Intersection(r.rast,3, p.geom) As gv
FROM massgis.parcels boston As p INNER JOIN aerials.boston As r
ON ST Intersects(p.geom, r.rast)

WHERE p.map 1d = '2010306000") As foo;



Open Source Tools that work
with PostGIS raster

GDAL - 1.8+ has PostGIS raster driver (looking for
funding to improve performance)

QGIS beta support now via plug-in

GvSig beta support will be integrated in next release

available as a plug-in now for current (but only
works with older WKT Raster (0.1.6) )

MapServer — the first to work — via GDAL driver 1.7+
(better to use 1.8+ GDAL driver)



Mapserver Layer

LAYER
NAME boston aerials
TYPE raster
STATUS ON

DATA "PG:host=‘'localhost' port='5432"
dbname="'ma' user='ma' password=‘test'
schema='aerials' table='o 2 boston' mode='2"'"
PROJECTION -
"lnit=epsg:26986"
END
END

Using aerials.o_2 boston Using aerials.boston




PostGIS in Action
use promo: postgis40

Get 40% off PostGIS in Action purchase if buy directly
from Manning:

postgis40 is good till March 3rd



Questions



