TOP 10
OUN pROBLEMS
POSTGIS

LEO HSU AND REGINA OBE

lr@pcorp.us Consulting

Buy our books! at http://www.postgis.us/page_buy book

BOOK IN PROGRESS: PGROUTING: A
PRACTICAL GUIDE
HTTP://LOCATEPRESS.COM/PGROUTING

http://www.paragoncorporation.com/
http://postgis.net/
mailto:lr@pcorp.us
http://www.paragoncorporation.com/Rates.aspx
http://www.postgis.us/page_buy_book
http://locatepress.com/pgrouting
http://locatepress.com/pgrouting

1. FIND N-CLOSEST PLACES (KNN)

Given a location, find the N-Closest places.

http://locatepress.com/pgrouting

EXAMPLE N-CLOSEST USING GEOGRAPHY
DATA TYPE

Closest 5 Indian restaurants to here

SELECT name, other tags->'amenity' As type,

ST Point (- g ,) : :geography <-> geog As dist
FROM brooklyn pois As pois
WHERE other tags @> 'cuisine=>indian'::hstore
ORDER BY dist

LIMIT ;
name | type | dist

___________________________ _|.______________|___________________
Asya | restaurant | 704.78880769187
Desi Express (food truck) | fast food | 2071.71309417315
Joy Indian Restaurant | restaurant | 2108.03043091333
Bombay Cuisine | restaurant | 2170.82610386014
Diwanekhaas | restaurant | 2407.92883192109

(5 rows)

2. WHAT PLACES ARE WITHIN X-
DISTANCE

Limit results set by distance rather than number of records.
Like KNN, geometry can be anything like distance from a road,
a lake, or a point of interest.

EXAMPLE: GEOGRAPHY WITHIN 1000
METERS OF LOCATION

Things within 1000 meters from a location. This will work for
PostGIS 1.5+

SELECT name, other tags->'amenity' As type,
ST Distance (pois.geog,ref.geog) As dist m
FROM brookTyn pois AS pois, -
(SELETT ST Point (- ,) : :geography) As ref (geoq)
WHERE other tags @> 'cuisine=>indian'::hstore
AND ST DWithin(pois.geog, ref.geog,)
ORDER BY dist m;

type | dist m

restaurant | 704.31393886

3. CONTAINMENT

Commonly used for political districting and aggregating other
pertinent facts. E.g. How many people gave to political

campaigns in 2013 and what was the total per boro ordering
by most money.

SELECT c.boro name, COUNT (*) As num, SUM(amount) As total contrib

FROM ny campaign contributions As m INNER JOIN nyc boros As ¢ ON ST Covers (c.geon
GROUP BY c.boro name - o

ORDER BY total Contrib DESC;

boro name | num | total contrib
_______________ +______+_______________
Manhattan | 4872 | 4313803.55
Queens | 3751 | 1262684 .36
Brooklyn | 2578 | 1245226.04
Staten Island | 813 | 248284 .47
Bronx | 999 | 219805.02

(5 rows)

4. MAP TILE GENERATION

Common favorite for generation tiles from OpenStreetMap
data. Check out TileMill which reads PostGIS vector data and
can generate tiles. Various loaders to get that OSM data into
your PostGIS database: osm2pgsql, imposm, GDAL.

https://www.mapbox.com/tilemill/

5. FEED DATA TO MAPS IN
VARIOUS VECTOR FORMATS

GeoJSON, KML, SVG, and TWB (a new light-weight binary form
in PostGIS 2.2). GeoJSON commonly used with Javascript Map
frameworks like OpenlLayers and Leaflet.

SELECT row to json(fc)

FROM (SELECT "FeatureCollection' As type,

array to json(array agg(f)) As features

FROM T({SELECT 'Feature' As type

, ST AsGeoJSON (ST Transform(lg.geom,))::Jjson As geometry

, row to json((SELECT 1

FROM T{SELECT route shor As route, route long As name) As 1
)) As progerties_ -

FROM nyc subway As 1lg) As £) As fc;

6. 3D VISUALIZATION FOR
SIMULATION

X3D useful for rendering PolyhedralSurfaces and Triangular
Irregulated Networks (TINS), PolyHedralSufaces for things like
buildings. TINS for Terrain

Checkout https://github.com/robe2/node_postgis_express
built using NodelS and http://www.x3dom.org (X3D in html 5)

Use 3D bounding box &&& operator and form a 3D box filter

SELECT string agg('<Shape><Appearance>

<ImageTextuTre url='"'"images/' |
use
|| '-jpg"" />
</Appearance>"'
| | ST AsX3D(geom) || '</Shape>', ''")

FROM data.boston 3dbuildings
WHERE geom &&& ST Expand (
ST Force3D(—
— ST Transform/(
— ST SetSRID(
— ST Point(— ’)I)/)
))

https://github.com/robe2/node_postgis_express
http://www.x3dom.org/

X3Dom with texture

7. ADDRESS STANDARDIZATION /
GEOCODING / REVERSE
GEOCODING

PostGIS 2.2 comes with extension address_standardizer. Also
included since PostGIS 2.0 is postgis_tiger_geocoder (only
useful for US).

In works improved address standardizer and worldly useful
geocoder - refer to: https://github.com/woodbri/address-
standardizer

https://github.com/woodbri/address-standardizer/tree/develop/src

ADDRESS STANDARDIZATION

Need to install address_standardizer,
address_standardizer_data_us extensions (both packaged with
PostGIS 2.2+). Using hstore also to show fields

SELECT *

FROM each (hstore (standardize address('us lex', 'us gaz','us rules'

, '29 Fort Greene P1', - - - -
'Brooklyn, NY 11217"')))

WHERE wvalue > '';

key | value
___________ _|______________
city | BROOKLYN
name | FORT GREENE
state | NEW YORK
suftype | PLACE
postcode | 11217
|

house num 29

(6 rows)

Same exercise using the packaged postgis_tiger_geocoder
tables that standardize to abbreviated instead of full name

SELECT *

FROM each (hstore(standardize address('tiger.pagc lex',
'tiger.pagc gaz', - -
'tiger.pagc rules', '29 Fort Greene P1l',

'Brooklyn, NY 112T7"')))

WHERE wvalue > '';

key | value
___________ +_____________
city | BROOKLYN
name | FORT GREENE
state | NY
suftype | PL
postcode | 11217
house num | 29

(6 rows)

GEOCODING USING POSTGIS TIGER
GEOCODER

Given a textual location, ascribe a longitude/latitude. Uses
postgis_tiger_geocoder extension requires loading of US
Census Tiger data.

SELECT pprint addy(addy) As address,
ST X (geomout) AS 1lon, ST Y(geomout) As lat, ratin
FROM geocode ('29 Fort Greene P1, Brooklyn, NY 11217',71);

address | lon | lat | rating

29 Fort Greene P1l, New York, NY 11217 | =-73.976819945824 | 40.6889624828967 | 8
(1 row)

REVERSE GEOCODING

Given a longitude/latitude or GeoHash, give a textual
description of where that is. Using postgis_tiger_geocoder
reverse_geocode function

SELECT pprint addy (addrs) AS padd
array to string(r.street, AS cross streets
FROM reverse geocode (ST P01nt(,)) AS r
, unnest(r.addy) As addrs;

padd | Cross_streets

29 Fort Greene P1l, New York, NY 11217 | Dekalb Ave,Fulton St
(1 row)

8. RASTER: ANALYZE
ENVIRONMENT

e Elevation
e Soil
e Weather

GIVE ME ELEVATION, TEMPERATURE
POLLUTION LEVEL AT SOME LOCATION

SELECT
ST Val (rast, geom) A 1
FROM de CROSS JOIN
ST Trans form(
ST SetSRID(
ST Point (-71.)
)
) As ge
S ntersects (rast, g)

DID YOU KNOW
POSTGIS IS NOT JUST A
GEOGRAPHIC TOOL?

9. ANAYLZE AND CHANGE YOUR
PICTURES WITH SQL

Pictures are rasters. You can manipulate them in SQL using
the power of PostGIS.

READING PICTURES STORED OUTSIDE OF
THE DATABASE: REQUIREMENT

new in 2.2 GUCS generally set on DATABASE or system level
using ALTER DATABASE SET or ALTER SYSTEM. In PostGIS 2.1
and 2.0 needed to set these as Server environment variables.

SET postgis.enable outdb rasters TO true;
SET postgis.gdal enabled drivers TO 'GTiff PNG JPEG';

REGISTER YOUR PICTURES WITH THE
DATABASE: OUT OF DB

You could with raster2pgsqgl the -R means just register, keep
outside of database:

raster2pgsgl -R c:/pics/*.Jjpg -F pics | psql

OR

CREATE TABLE pics(id serial primary key, rast raster, file name text);

INSERT INTO pics(rast, file name)
VALUES (-

ST AddBand (
- NULL: :raster,
'C:/pics/pggroup.jpg'::text, NULL::int[]
), 'pgroup'

ST AddBand (
o NULL: :raster,
'C:/pics/monasmall.jpg'::text, NULL::int[]
), 'mona'),

(
ST AddBand (
- NULL: :raster, .
'C:/pics/osgeo paris.jpg'::text, NULL::int[]
), 'osgeo paris'); -

CHECK BASIC INFO

SELECT file name, ST Width (rast) As width, ST Height (rast) As height,
ST NumBands (rast) AS nbands -

FROM pics;

file name | width | height | nbands
————————————— e
pgroup | 1920 | 1277 | 3
mona | 800 | 1192 | 3
o0sgeo_paris | 2048 | 1365 | 3

(3 rows)

RESIZE THEM AND DUMP THEM BACK OUT

This uses PostgreSQL large object support for exporting. Each
picture will result in 4 pictures of 25%, 50%, 75%, 100% of
original size

DROP TABLE IF EXISTS tmp out ; . .
-- write to lob and store the resulting oids of lobs in new table
CREATE TABLE tmp out AS

SELEC? loid, lowrite(lo open(loid,) ,png) As num bytes, file name, p
FROM - - -

SELECT file name, lo create(0) AS loid,

ST AsPNG (ST Resize(rast, p* , P*)) AS png, p

FROM pics , generate series(.,%) As p) As £f;

-— export to file system .
SELECT lo export(loid, 'C:/temp/' || file name || '-' || p::text || '.png'")
FROM tmp out; -

--delete lobs
SELECT lo unlink(loid)
FROM tmp out;

25% resized images

mona- 0sgeo_paris-1.png pggroup-1.png
1.png

DO TONS OF OPERATIONS IN ONE SQL

This will do lots of crazy combo stuff using raster and
geometry functions that merges all pictures into one. 12 secs

SELECT string agg(file name,'-'"') As file name,
ST AsJPEG(— - -
ST Resize (ST Union (
ST SetUpperLeft (
ST Clip(rast,
— ST Buffer (ST Centroid(rast::Geometry),)),0,0), '"MAX'"),
,0.7)) AS Jpg
FROM pics;

THE RESULT IS A BIT GHOSTLY

CREATE A NEW CURRENCY

SELECT
ST AsPNG (
— ST Aspect(ST Resize(
- ST Clip(rast,
ST Buffef(ST Centroid(rast::Geometry), (ST Width(rast)/ ') ::integer)
, , algorithm := 'Lanczos')
'8BUTI")

14 4

) AS png
FROM pics;

PostGIS OSGeo PostgreSQL Group

10. MANAGE DISCONTINUOUS
DATE TIME RANGES WITH
POSTGIS

A linestring can be used to represent a continous time range
(using just X axis). A multi-linestring can be used to represent
a related list of discontinous time ranges. PostGIS has

hundreds of functions to work with linestrings and
multilinestrings.

HELPER FUNCTION FOR CASTING
LINESTRING TO DATE RANGES

CREATE FUNCTION to daterange (x geometry)
RETURNS daterange AS

$S
DECLARE
y daterange;
x1 date;
x2 date;
BEGIN
x1 = CASE WHEN ST X (ST StartPoint(x)) = THEN '-infinity' ELSE 'J' || ST X(ST StartPoint (x
x2 = CASE WHEN ST X (ST ENDPoint(x)) = THEN 'infinity' ELSE 'J' || ST X (ST EndPoint(x)) EN
y = daterange(xl, x2, '[)');
RETURN vy;
END;
$S

LANGUAGE plpgsql IMMUTABLE;

HELPER FUNCTION FOR CASTING DATE
RANGE TO LINESTRING

CREATE FUNCTION to linestring(x daterange)
RETURNS geometry AS

$S
DECLARE
y geometry(linestring);
x1 bigint;
x2 bigint;
BEGIN
x1 = to char (CASE WHEN lower(x) = '-infinity' THEN '1900-1-1' ELSE lower(x) END, 'J')::bigint;
x2 = to char (CASE WHEN upper(x) = 'infinity' THEN '2100-1-1' ELSE upper (x) END, 'J')::bigint;
y = ST GeomFromText ('LINESTRING(' || x1 [' O," [| x2 || " 0)");
RETURN y;
END;
$S

LANGUAGE plpgsql IMMUTABLE;

COLLAPSING OVERLAPPING DATE RANGES

Result is single linestring which maps to date range

SELECT id,
to daterange (
- (ST Dump (.
) -) ST Simplify (ST LineMerge (ST Union(to linestring(period))),!))
.geom
FROM (J

VALUES
(! ,daterange ('1970-11-5"::date, "1980-1-1", "[)
(,daterange('1990—11—5'::date,'infinit¥','[)
~ (l,daterange('1975-11-5"'::date, "1995-1-1","[)
) x (1d, period)

GROUP BY id;

)),
)) s
))

id | to daterange
—_——t—_--—- - - ——————— =
1 | [1970-11-05,infinity)
(1 row)

COLLAPSING
DISCONTINUOUS/OVERLAPPING DATE
RANGES

Result is a multi-linestring which we dump out to get individual
date ranges

SELECT id,

to daterange (
- (ST Dump (. . . , , . .

) -) ST Simplify (ST LineMerge (ST Union(to linestring(period))),!))
.geom

FROM (J

VALUES

(l,daterange('1970-11-5"::date, "1975-1-1","'[) ")),
(l,daterange ('1980-1-5"::date, 'infinity',"[) ")),
(! ,daterange ('1975-11-5"::date, "1995-1-1","[) "))

) x (id, period)
GROUP BY id;

id | to daterange

____+ _________________________
1 | [1970-11-05,1975-01-01)
1 | [1975-11-05,infinity)

(2 rows)

COLLAPSING CONTIGUOUS DATE RANGES

Result is a linestring which we dump out to get individual date
range

SELECT 1id,

to daterange(
(ST Dump (
) \ ST Simplify (ST LineMerge (ST Union (to linestring(period))),U))
.geom

FROM (

VALUES

(! ,daterange ('1970-11-5"::date, "1975-1-1","[) ")),
(! ,daterange ('1975-1-1"::date, '1980-12-31","[) ")),
(I ,daterange ('1980-12-31"'::date, "1995-1-1","'[) "))

) x (id, perlod)

GROUP BY id;

id | to daterange
_____I_ _________________________
1 | [1970-11-05,1995-01-01)
(1 row)

BONUS: ROUTING WITH
PGROUTING

Finding least costly route along constrained paths like roads,
airline routes, the vehicles you have in hand, pick-up / drop-off

constraints.

Buy our upcoming book (Preview Edition available) pgRouting:
A Practical Guide http://locatepress.com/pgrouting

ocase
PRESS

Open Source “Geo" Books & Training

to find out more

http://locatepress.com/pgrouting
http://locatepress.com/pgrouting

LINKS OF INTEREST

e PostGIS
e Planet PostGIS

http://postgis.net/
http://planet.postgis.net/

THE END

THANK YOU. BUY OUR BOOKS
HTTP://WWW.POSTGIS.US

http://www.postgis.us/

