TEN PROBLEMS
SOLVED BY
SPARAGON POSTGIS

LEO HSU AND REGINA OBE

Presented at PGConfUS 2017
Buy our books! at http://www.postgis.us/page_buy_ book

Books in progress: pgRouting: A Practical Guide
PostgreSQL: Up and Running 3rd Edition

s PostgreSQL
Up & Running

FTIL T@ ocase 48
fOssdGison] PRESS t d

Open Source "Geo" Books & Training

http://www.paragoncorporation.com/
http://postgis.net/
http://www.postgis.us/page_buy_book
http://locatepress.com/pgrouting
http://shop.oreilly.com/product/0636920052715.do
http://2017.foss4g.org/
http://locatepress.com/pgrouting
http://shop.oreilly.com/product/0636920052715.do

PROXIMITY ANALYSIS

N closest things. Things within x distance of this. Things that
are within another. Both 2 and 3d geometries, 2d geodetic
(aka geography), and even raster.

EXAMPLE N-CLOSEST USING GEOGRAPHY
DATA TYPE

Closest 5 restaurants to here and kind of cuisine

SELECT
name,
tags—->>'cuisine' As cuilsine,
ST Point (- ,) : :geography <-> geog As dist meters

FROM nJ poils As pols _
WHERE tags @> '{"amenity":"restaurant"}'::jsonb
ORDER BY dist meters

LIMIT ;

name | cuisine | dist meters
_____________________________ _I_________________________I__________________
Chilis | mexican | 183.749762473017
Battello | italian | 337.82552535307
Park and Sixth | american | 631.058208835878
Taphouse | NULL | 740.060280459834

| |

The Kitchen at Grove Station seasonal new american 764.554569258853

GEOGRAPHY WITHIN 1000 METERS OF
LOCATION

Works for geometry as well, but measurements and
coordinates are in units of the geometry, not always meters.

SELECT name, tags—->>'amenity' As type, tags->>'cuisine' AS cuisine, ST Distance(pois.geog,ref.geog) A
FROM nj pois AS pois,

(SELECT ST Point (-/4. , .) : :geography) As ref (geoq)
WHERE tags ? 'cuisine' AND ST DWithin(pois.geog,ref.geog,)

ORDER BY dist m;

name | type | cuisine | dist m

————————————————————————————— ettt et e it
Chilis | restaurant | mexican | 183.54545201
Battello | restaurant | italian | 338.39714681
Starbucks | cafe | coffee shop | 350.25322227
Park and Sixth | restaurant | american | ©32.12204878
Torico Ice Cream | fast food | ice cream | 741.32599554
The Kitchen at Grove Station | restaurant | seasonal new american | 764.72996783
Rustique | restaurant | italian | 822.04122537
Helen's Pizza | restaurant | pizza Italian | 866.65681852

HOW MANY SUBWAY STOPS IN EACH
BOROUGH?

SELECT b.boro name, COUNT (s.stop id) As num stops

FROM nyc boros AS b INNER JOIN nyc subways Stops AS s ON ST Covers (b.geom, s.geom)
GROUP BY b.boro name - - o

ORDER BY b.boro name;

|
______________ +__________
Bronx | 70
Brooklyn | 169
Manhattan | 151
Queens | 82
Staten Island | 21

PROXIMITY WITH 3D DATA

If you have things like oil pipe lines and using linestrings with
a Z component, it's just like ST_Distance, except you want to
use ST_3DDistance, ST_3DDWithin, and ST_3DIntersects.
These are part of the core postgis extension.

For more advanced 3d, like if you need ST_3DIntersection,
and ST_3DIntersects that does true surface and solid analysis
(PolyhedralSurfaces), you'll want to install extension
postgis_sfcgal.

INTERSECT RASTER AND GEOMETRY:
RASTER VALUE AT A GEOMETRIC POINT

SELECT pois.name, ST Value(e.rast, ,poils.geom) AS elev
FROM pois INNER JOIN nj ned As e ON ST Intersects(pois.geom,e.rast)
WHERE pois.tags ? 'cuisine' -

ORDER BY ST SetSRID (ST Point (- ’),) <=> pois.geom
LIMIT ; - -

name | elev

_____________________________ +_________________

Chilis | 2.64900875091553

Starbucks | 2.61004424095154

Battello | 2.18213820457458

Park and Sixth | 3.79218482971191

The Kitchen at Grove Station | 2.06850671768188

REPROJECT ON-THE-FLY

DATABASE COLUMN TYPE
TRANSFORMATION AND CONVERSION FOR
GEOMETRY AND GEOGRAPHY

Convert from current projection to NYC State Plane feet (look
in spatial_ref_sys for options).
ALTER TABLE nyc boros

ALTER COLUMN geom TYPE geometry(Multlpolygon)
USING ST Transform(geom,

Convert geometry to geography

ALTER TABLE nyc boros .
ALTER COLUMN geom TYPE geography(Multlﬁolygon,)
USING ST Transform(geom,) : :geography;

Convert back to geometry

ALTER TABLE nyc boros
ALTER COLUMN geom TYPE geometry(Multlpolygon)
USING ST Transform(geom::geometry,) s

ST_TRANSFORM FOR RASTER

For more info, read the manual
http://postgis.net/docs/RT_ST_Transform.html. The algorithm
defaults to NearestNeighbor algorithm, fastest but not the
most appealing

SELECT ST Transform(rast,) AS rast
FROM nj ned
WHERE ST Intersects(rast,ST SetSRID(ST Point (-74. ,),)) ;

You can override the warping algorithm

SELECT ST Transform(rast, , 'Lanczos') AS rast
FROM nj ned
WHERE ST Intersects(rast,ST SetSRID(ST Point (-74. ,),)) ;

Creating a whole new transformed table, align your rasters.
This ensures rasters have same grid and pixel size.

WITH a AS (SELECT ST Transform(rast, , 'Lanczos') AS rast
FROM nj ned LIMIT) T

SELECT Tid, ST Transform(n.rast,a.rast, 'Lanczos') AS rast
INTO nj ned 3474

FROM nj ned AS n, a;

http://postgis.net/docs/RT_ST_Transform.html

3. MAP TILE GENERATION

Common favorite for generation tiles from OpenStreetMap
data. Check out TileMill and MapNik which both read PostGIS
vector data and can generate tiles. Various loaders to get that
OSM data into your PostGIS database: osm2pgsql, imposm,
GDAL. TileMill is a desktop tool and MapNik is a toolkit with
with python bindings and other language bindings.

https://tilemill-project.github.io/tilemill/
http://mapnik.org/

OUTPUT SPATIAL DATA IN MANY
FORMATS

GeoJSON, KML, SVG, and TWB (a new light-weight binary form
in PostGIS 2.2). Coming in PostGIS 2.4 is ST_AsMVT (for
loading data in MapBox Vector Tiles format) GeoJSON
commonly used with Javascript Map frameworks like
OpenlLayers and Leaflet.

SELECT row to json(fc)
FROM (-

SELEC? 'FeatureCollection' As type, array to json(array agg(f)) As features
FROM - -
SELECT
'Feature' As type, .
ST AsGeoJSON (ST Transform(lg.geom,))::Jjson As geometry,

row to json/(
" (SELECT 1 FROM (SELECT route shor As route, route long As name) Z
) As properties - -
FROM nyc subway As 1lg) AS f
) As fc; -

3D VISUALIZATION

X3D useful for rendering PolyhedralSurfaces and Triangular

Irregulated Networks (TINS), PolyHedralSufaces for things like
buildings. TINS for Terrain

Checkout https://github.com/robe2/node_postgis_express
built using NodelS and http://www.x3dom.org (X3D in html 5)

https://github.com/robe2/node_postgis_express
http://www.x3dom.org/

3D PROXIMITY AND RENDERING
Use 3D bounding box &&& operator and form a 3D box filter

SELECT strin agg(<Shape><Appearance><ImageTexture url= ""1m ges/"

| | use | % "' /></Appearance>"' || ST AsX3D(geom) || / Shape>', ''")
FROM data.boston dbuildings
WHERE

geom

&&&

ST Expand (ST Force3D (.
— ST TransTorm (ST SetSRID (ST Point (- ,),),))

,1T00) ;

X3Dom with texture

ADDRESS STANDARDIZATION /
GEOCODING / REVERSE
GEOCODING

PostGIS 2.2 comes with extension address_standardizer. Also
included since PostGIS 2.0 is postgis_tiger_geocoder (only
useful for US).

In works improved address standardizer and worldly useful
geocoder - refer to: https://github.com/woodbri/address-
standardizer

https://github.com/woodbri/address-standardizer

ADDRESS STANDARDIZATION

Need to install address_standardizer,
address_standardizer_data_us extensions (both packaged with
PostGIS 2.2+). Using json also to show fields

SELECT *
FROM json each text(
to json(—
standardize address('us lex', 'us gaz','us rules',
'29 Fort Greene P1', 'BrookIyn, NY 11217'))
) WHERE wvalue > '';

key | value
__________ _I_____________
city | BROOKLYN
name | FORT GREENE
state | NEW YORK
suftype | PLACE
postcode | 11217

house num | 29

Same exercise using the packaged postgis_tiger_geocoder
tables that standardize to abbreviated instead of full name

SELECT *
FROM json_each text (to_json(
standardize address('tiger.pagc lex', 'tiger.pagc gaz', 'tiger.pagc rules',

'29 Fort Greene P1','Brooklyn, NY 11217'))) WHERE wvalue > '';
key | value
__________ +____________
city | BROOKLYN
name | FORT GREENE
state | NY
suftype | PL
postcode | 11217
house num | 29

GEOCODING USING POSTGIS TIGER
GEOCODER

Given a textual location, ascribe a longitude/latitude. Uses
postgis_tiger_geocoder extension requires loading of US
Census Tiger data.

SELECT pprint addy(addy) As address, ST X(geomout) AS lon, ST Y(geomout) As lat,
FROM geocode (729 Fort Greene P11, Brooklyn, NY 11217',71); -

address | lon | lat | rating
—————————————————————————————————————— et ittt R
29 Fort Greene P1l, New York, NY 11217 | -73.976819945824 | 40.6889624828967 | 8

REVERSE GEOCODING

Given a longitude/latitude or GeoHash, give a textual
description of where that is. Using postgis_tiger_geocoder
reverse_geocode function

SELECT pprint addy(addrs) AS padd, array to string(r.street,',') AS cross streetes
FROM reverse geocode (ST Point (- , 20 .07Y)) AS r, unnest(r.addy) As addrs;

padd | cross streets
______________________________________ _|______________________
29 Fort Greene Pl, New York, NY 11217 | Dekalb Ave,Fulton St

PHOTOSHOP WITH POSTGIS

Pictures are rasters. Rasters are pictures. You can manipulate
them en masse using the power of PostGIS raster.

READING PICTURES STORED OUTSIDE OF
THE DATABASE: REQUIREMENT

new in 2.2 GUCS generally set on DATABASE or system level
using ALTER DATABASE SET or ALTER SYSTEM. In PostGIS 2.1
and 2.0 needed to set these as Server environment variables.

SET postgis.enable outdb rasters TO true;
SET postgils.gdal enabled drivers TO 'GT1ff PNG JPEG';

REGISTER YOUR PICTURES WITH THE
DATABASE: OUT OF DB

You could with raster2pgsqgl the -R means just register, keep
outside of database:

raster2pgsql -R /data/Dogs/*.jpg -F pics | psql

CREATE TABLE pics (file path text);

COPY pics FROM PROGRAM 'ls /data/Dogs/*.jpg';
ALTER TABLE pics ADD COLUMN rast raster;
ALTER TABLE pics ADD COLUMN file name text;

-- Update record to store reference to picture as raster, and file name
UPDATE pics SET rast = ST AddBand(NULL::raster, file path, NULL::intf([]),
file name = split part(file path,'/',");

GET BASIC RASTER STATS

This will give width and height in pixels and the number of
bands. These have 3 bands corresponding to RGB channels of
image.

SELECT file name, ST Width (rast) As width, ST Height (rast) As height,
ST NumBands (rast) AS nbands -

FROM pics

WHERE file name LIKE 'd%';

file name | width | height | nbands
— e ___ T T T
dalmatian.jpg | 200 | 300 | 3
doberman-pincher.jpg | 600 | 450 | 3

RESIZE THEM AND DUMP THEM BACK OUT

This uses PostgreSQL large object support for exporting. Each
picture will result in a picture 25% of original size

SET postgis.gdal enabled drivers TO 'PNG JPEG';

DROP TABLE IF EXISTS tmp out ;

CREATE TABLE tmg out AS . _
SELECT lo from bytea (!, ST AsPNG(ST Resize(rast, ,))) AS loid, filename
FROM pics7 - - -

SELECT lo export(loid, '/tmp/' || file name || '-25.png'")
FROM tmp out; -

SELECT lo unlink(loid)
FROM tmp out;

25% resized image

dalmation.jpg dalmation.jpg-25.png

CHANGE THE PIXEL BAND VALUES

A raster is an array of numbers. ST_Reclass lets you change
the actual numbers by reclassifying them into ranges. This for
example will allow you to reduce a 256 color image to 16
colors or change black spots to white spots.

WITH c AS (SELECT '(241- 255 15, " | | string agg(i::text ||
N i) ::text, ', ") AS car
FROM generate serles(,) AS i
SELECT
ST Reclass (
- rast,
ROW(!,c.carg, '8BUI"',) : :reclassarg,
ROW(~,c.carg, '8BUI",) : :reclassarg,
ROW (-, c.cargqg, '8BUI') ::reclassarg
) AS rast

FROM pics, c
WHERE file name = 'dalmatian.jpg'

DALMATION REVERSED

Before Reclass After Reclass

CROP THEM

ST_Clip is the most commonly used function in PostGIS for
raster. Here we buffer by 120 pixels from centroid of the
picture and use that as our clipping region.

SELECT ST Clip(rast,
ST Buffer (ST Centroid(rast::geometry),),
'{0,0,0}"'::integer[])

FROM pics

WHERE file name = 'dalmatian.jpg';

DALMATION CROPPED

Before Crop After Crop

.10

RASTER: ANALYZE
ENVIRONMENTAL DATA

e Elevation
e Soil
e Weather

MIN, MAX, MEAN ELEVATION ALONG A
ROAD

There are several stats functions available for raster. You'll
almost always want to use these in conjunction with ST_Clip
and ST_Count.

WITH estats AS
(SELECT sld name, ST Count (clip) AS num pixels, ST SummaryStats(clip) AS ss
FROM o o o o
nj ned AS e INNER JOIN
(SELECT sld name, geom
FROM nj~ roads
WHERE sTd name IN('I-78', 'I-78 EXPRESS'")) AS r
ON ST Intersects(geom, rast)
, ST Clip(e.rast, r.geom) AS clip

)
SELECT sld name, MIN((ss).min) As min, MAX/(

(ss) .max) As max,
SUM((ss) .mean*num pixels)/SUM(num pixels)

AS mean
FROM estats
GROUP BY estats.sld name;
sld name | min | max | mean
—————————————— e et e
I-78 | -6.32061910629272 | 298.695068359375 | 82.9211996035217
I-78 EXPRESS | -0.877017498016357 | 97.2313003540039 | 30.5347544396378
(2 rows)

Time: 422.456 ms

MANAGE DISCONTINUOUS DATE
TIME RANGES WITH POSTGIS

A linestring can be used to represent a continous time range
(using just X axis). A multi-linestring can be used to represent
a related list of discontinous time ranges. PostGIS has

hundreds of functions to work with linestrings and
multilinestrings.

HELPER FUNCTION FOR CASTING
LINESTRING TO DATE RANGES

CREATE FUNCTION to daterange (X geometry)
RETURNS daterange AS

$S
DECLARE
y daterange;
x1 date;
x2 date;
BEGIN
x1 = CASE WHEN ST X (ST StartPoint(x)) = THEN '—-infinity' ELSE 'J' || ST X (ST StartPoint (x
x2 = CASE WHEN ST X (ST ENDPoint(x)) = THEN 'infinity' ELSE 'J' || ST X (ST EndPoint(x)) EN
y = daterange(xl, x2, '[)"'):
RETURN vy;
END;
$S

LANGUAGE plpgsgl IMMUTABLE;

HELPER FUNCTION FOR CASTING DATE
RANGE TO LINESTRING

CREATE FUNCTION to linestring (x daterange)
RETURNS geometry AS

$9

DECLARE
y geometry(linestring);
x1 bigint;
x2 bigint;

BEGIN

x1l = to char (CASE WHEN lower (x) = '—infinity' THEN '1900-1-1' ELSE lower(x) E
X2 = to char (CASE WHEN upper (x) = 'infinity' THEN '2100-1-1' ELSE upper (x) EM
y = ST GeomFromText ('LINESTRING (' || x1 || " O," || x2 || " 0)");

RETURN vy;

END;
LANGUAGE plpgsgl IMMUTABLE;

COLLAPSING OVERLAPPING DATE RANGES

Result is single linestring which maps to date range

SELECT id,
to daterange(
— (ST _Dump (
. STT51mpllfy(ST LlneMerge(ST Union (to llnestrlng(perlod)))))
eom
FROM (J
VALUES
(!l ,daterange (- date,'1980 1- 1' [))),

'1970-11-5": ' !

(! ,daterange ('1990-11-5"'::date, ' 1nf1n1t ' ! ,
. (l,daterange ('1975-11-5"'::date, "1995- ' !

) x (1d, perlod)

GROUP BY 1d;

id | to_daterange
____|._ ______________________
1 | [1970-11-05,infinity)

COLLAPSING DISCONTINUOUS / OVERLAPPING RANGES

Result is a multi-linestring which we dump out to get individual
date ranges

SELECT 1id,
to daterange (
— (ST _Dump (_ .
) _ST751mpllfy(ST_LlneMerge(ST_Union(to_linestring(period))),))
.geom
FROM (

VALUES
(! ,daterange ('1970-11-5"::date, "1975-1-1","[)
(! ,daterange ('1980-1-5"::date, "infinity"',"'[)"'
~ (l,daterange('1975-11-5"'::date, "1995-1-1", " [)
) x (1d, period)
GROUP BY id;

"))
))y
"))

4

[1970-11-05,1975-01-01)
[1975-11-05,infinity)

COLLAPSING CONTIGUOUS DATE RANGES

Result is a linestring which we dump out to get individual date
range

SELECT id,
to daterange (
— (ST Dump (
) _STTSimplify(ST LineMerge (ST Union(to linestring(period))),))
.geom
FROM (
VALUES
(l,daterange('1970-11-5"::date, "1975-1-1","[) ")),
(l,daterange('1975-1-1"::date, '1980-12-31","[) ")),
(!,daterange ('1980-12-31"'::date, '1995-1-1","[) "))

) x (id, period)
GROUP BY id;

id | to_daterange

1 | [1970-11-05,1995-01-01)

CREATE AN AGGREGATE FUNCTION

CREATE OR REPLACE FUNCTION utility.collapse periods final (param g geometry)
RETURNS daterange[] AS

SELECT array agg(a) FROM (SELECT to daterange (
(ST Dump (ST Simplify (ST LineMerge (param g),))).geom)) AA a(a);

$S
LANGUAGE 'sql';

CREATE AGGREGATE utility.collapse periods (daterange) (
SFUNC=utility.linestring add daterange,
STYPE= geometr{
FINALFUNC=utility.collapse periods final, INITCOND='LINESTRING EMPTY'

) ;

CREATE OR REPLACE FUNCTION utility.linestring add daterange(c geometry,x dateranc
RETURNS geometry AS

SELECT ST Union(c,to linestring(x));
LANGUAGE 'sqgl';

SELECT id, unnest (collapse periods (period))
FROM (o
VALUES

(/,daterange('1970-11-5"::date, '1975-1-1","[) ")),
(l,daterange ('1980-1-5"::date, "infinity',"[) ")),
(l,daterange('1975-11-5"::date, "1995-1-1","[) "))

) x (id, period)

GROUP BY id;

id | to_daterange

—_——t—-—-—_- - —_—————————————— =
1 | [1970-11-05,1975-01-01)
1 | [1975-11-05,infinity)

SUPER COLLAPSE

WITH z (id,x,grade) AS (
VALUES

("alex',to linestring(daterange('2017-1-2",'2017-1-3",'[)")),'A")
('alex',to linestring(daterange('2017-1-1"','2017-1-6","'[)")),'B")
(’alex',to_linestring(daterange(’2017—1—5’,'2017—1—8','[)’)),'C')
(’alex',to:linestring(daterange(’2017—1—1’,'2017—1—9','[)’)),'X')
('beth',to linestring(daterange('2017-1-1"','2017-1-3"',"[)")),'A")
('beth',to linestring(daterange('2017-1-5','2017-1-9',"'[)")),'B")
('beth',to linestring(daterange('2017-1-1"','2017-1-9',"'[)")),'X")

)

SELECT

a.id,

to daterange(a.u) AS period,

MIN (b.grade) AS grade
FROM

(SELECT id, (ST Dump (ST Union(x))).geom AS u FROM z GROUP BY id) a

INNER JOIN N N

z b

ON a.id = b.id AND ST Intersects(a.u,b.x) AND NOT ST Touches(a.u,b.x)
GROUP BY a.id, a.u

id | period | grade
______ +__________________________l_______
alex | [2017-01-01,2017-01-02) | B
alex | [2017-01-02,2017-01-03) | A
alex | [2017-01-03,2017-01-05) | B
alex | [2017-01-05,2017-01-06) | B
alex | [2017-01-06,2017-01-08) | C
alex | [2017-01-08,2017-01-09) | X
beth | [2017-01-01,2017-01-03) | A
beth | [2017-01-03,2017-01-05) | X
beth | [2017-01-05,2017-01-09) | B

(9 rows)

WITH
z (id,x,grade) AS (
VALUES

("alex',to linestring(daterange('2017-1-2",'2017-1-3",'[)")),'A"),
('alex',to linestring(daterange('2017-1-1','2017-1-6"',"'[)")),'B"),
(’alex',to:linestring(daterange(’2017—1—5’,'2017—1—8','[)’)),'C'),
('alex',to linestring(daterange('2017-1-1','2017-1-9',"'[)")),'X"),
('beth',to linestring(daterange('2017-1-1','2017-1-3","'[)")),'A"),
('beth',to linestring(daterange('2017-1-5','2017-1-9',"'[)"')),'B"),
('"beth',to linestring(daterange('2017-1-1","'2017-1-9","'[) ")), 'X")
),
w AS (
SELECT
a.id,
a.u AS x,
MIN (b.grade) AS grade
FROM
(SELECT id, (ST Dump (ST Union(x))).geom AS u FROM z GROUP BY id) a
INNER JOIN N N
z b

ON a.id = b.id AND ST Intersects(a.u,b.x) AND NOT ST Touches(a.u,b.x)
GROUP BY a.id, a.u
)

SELECT

id,
id | period | grade
_____ +_________________________+______
alex | [2017-01-01,2017-01-02) | B
alex | [2017-01-02,2017-01-03) | A
alex | [2017-01-03,2017-01-06) | B
alex | [2017-01-06,2017-01-08) | C
alex | [2017-01-08,2017-01-09) | X
beth | [2017-01-01,2017-01-03) | A
beth | [2017-01-03,2017-01-05) | X
beth | [2017-01-05,2017-01-09) | B
8 rows)

ROUTING WITH PGROUTING

Finding least costly route along constrained paths like roads,
airline routes, driving distance analysis, fleet routing based on
time constraints, and many more.

Buy our upcoming book (Feature complete Preview Edition
available) pgRouting: A Practical Guide
http://locatepress.com/pgrouting

Iocoﬂ}e @"

L AXN

to find out more

http://locatepress.com/pgrouting
http://locatepress.com/pgrouting

TRAVELING SALES PERSON PROBLEM

Routing nuclear power plant inspector

WITH
T AS (SELECT * .
FROM pgr eucledianTSP ($SSELECT id, ST X(geom) AS x, ST Y(geom) AS y
FROM nuclear power plantss$$s, ;L) -

)
SELECT T.seq, T.node AS id, N.name, N.geom, N.country .
FROM T INNER JOIN nuclear power plants N ON T.node = N.id
ORDER BY seq; - -

seq | id | name | country
————— o
1 | 19 | Dukovany Nuclear Power Station | Czech Republic
2 | 20 | Temelin Nuclear Power Station | Czech Republic
3 45 | Isar Nuclear Power Plant | Germany
4 | 44 | Gundremmingen Nuclear Power Plant | Germany
5] 46 | Neckarwestheim Nuclear Power Plant | Germany
6 | 47 | Philippsburg Nuclear Power Plant | Germany
150 | 55 | Higashid+iri Nuclear Power Plant | Japan
151 | 64 | Tomari Nuclear Power Plant | Japan
152 | 19 | Dukovany Nuclear Power Station | Czech Republic
(152 rows)

Time: 48.706 ms

TSP IN QGIS

6o

112

113 .

714

CATCHMENT AREAS: DRIVE TIME DISTANCE

What areas can a fire station service based on 5 minute drive
time.

SELECT As id, ST SetSRID(pgr pointsAsPolygon (
SSSELECT dd.seqg AS id, ST X(v.the geom) AS x, ST Y(v.the geom) As y
FROM pgr drivingDistance (Ssub$SELECT gid As id, source, target,
cost s AS cost, reverse cost s AS reverse cost
FROM ospr.waysS$Ssubs$, - -
(SELECT n.id
FROM ospr.ways vertices pgr AS n
ORDER BY ST SetSRID(—
ST Point (= ,),) <> n.the geom LIMIT)
, 5*60, tTue - |
) AS dd INNER JOIN ospr.ways vertices pgr AS v ON dd.node = v.id$$
),) As geom; - -

ALPHASHAPE AREA OUTPUT IN QGIS
Overlaid on roads network and with fire station location starred

\

o

= \P\Aﬂ"’
T oRE

SRR

=
e

\\ |

<
SRR B4

o e R RS
ol e Sod))
S o = s 1 4 |
ESpac e ﬂ'ﬁv 4
5 5 e | !
e e TN e
AN e NS s Wi CSni=ttay
A N A SN AEESS R R T
N NN W PEMNCER == SRR SRV
TN, CREINE SR, I e I N
SN et e i = e ..wA\... === .&ﬁ.ﬁ—lﬂﬂv’ﬁm.‘.?
7 N U = e A _.‘. \ R DUARLE
= ”‘“M\ < =) .o%/w’—.“'““‘ﬂ\v‘ < 4ﬂﬂh) S == N mﬁnﬂ“n.‘)da‘%ﬂ.
SR »«u\,«wﬁa\%»%m = Sy s k=
1 S DI N TR R SN = e
N\ 5 R e P e v = SRy — B
EOSSNEN\ R IR SRS i A= S
AN e N SRS NS TSSO =
el ‘ SRR Ny NSNS =
W=t tgee iy 87
= 7 A NewaNars =z S X
SN SOOI L) =
X e AN

.

/Mﬁa

2 "O

T

/ // /’l‘%

oo Y
TR
T oy
< Y
NTS : ‘m\v.m;”"\
SQ

e
g

e | A
R N
e
=i

b;

11

DIJKSTRA: FINDING OPTIMAL ROUTE

Fastest path from Chesham to West Croydon

SELECT seq, S.station,
FROM
pgr dijkstra ('

L.name, round((cost *

“SELECT gid AS id, source,

false
R

)
INNER JOIN london stations S ON R.node
LEFT JOIN london Tube lines L ON R.edge

ORDER BY R.seq;

seq | station
_____ _I_______________________
1 | Chesham
2 | Chalfont and Latimer
3 | Chorleywood

12 | Wembley Park
13 | Finchley Road
14 | Baker Street

| Embankment
20 | Waterloo
21 | Southwark
22 | London Bridge
23 | Bermondsey
24 | Canada Water
31 Penge West

|
32 | Anerley
| Norwood Junction
34 | West Croydon
(34 rows)

Time: 36.509 ms

Metropolitan
Metropolitan
Metropolitan

Metropolitan
Metropolitan
Jubilee

Bakerloo
Jubilee
Jubilee
Jubilee
Jubilee
Overground

Overground
Overground
Overground
NULL

target,
FROM london tube lines',

(SELECT station id FROM london stations WHERE station

(SELECT station id FROM london stations WHERE station

OO rOoOOoo

[oN i e

length AS cost

S.station id

) ::numeric,) AS miles

'Chesham'),
'West Croydon'),

DIJKSTRA: FINDING OPTIMAL ROUTE

London Tubes optimal path

: Chesham

: Chalfont and Latimer

\
&: Northwood Hills

.
\(: Pinner
\

~

4: Canada Water |
@5: Surrey\Quays
/N {

/\ \

/ A\ I

@6: New Cross Gate
%1: Bré«;kley

/

@8: Honor Oak Park
f

Y

@9 Forest Hill

Sydenham

Penge West
nerley

/
‘3: Norwood Junction

@4: West Croydon

LINKS OF INTEREST

PostGIS

Planet PostGIS

pgRouting

PostGIS.US our book site, includes code and data used in our
books.

http://postgis.net/
http://planet.postgis.net/
http://pgrouting.org/
http://postgis.us/

THE END

THANK YOU. BUY OUR BOOKS
HTTP://WWW.POSTGIS.US

http://www.postgis.us/

