

Regina Obe

What is coming in PostGIS 3.1What is coming in PostGIS 3.1

(https://www.paragoncorporation.com)
(https://postgis.net)

PostGIS In Action 3rd Edition available for PurchasePostGIS In Action 3rd Edition available for Purchase

Get a copy of 2nd edition with purchase of 3rd edition
Covers PostGIS 3 and 3.1

16 of 17 chapters completed.
 �nd code and data here

Live Book

https://www.manning.com/books/postgis-in-action-third-edition
(https://www.manning.com/books/postgis-in-action-third-edition)

https://www.postgis.us (https://www.postgis.us)

https://livebook.manning.com/book/postgis-in-action-third-edition
(https://livebook.manning.com/book/postgis-in-action-third-edition)

https://www.manning.com/books/postgis-in-action-third-edition
https://www.postgis.us/
https://livebook.manning.com/book/postgis-in-action-third-edition

Safe Harbor StatementSafe Harbor Statement

Some of the following mentions are
forward looking statements and
intended to outline the direction of
PostGIS development.
They are not a commitment to deliver
any code or functionality and should
not be relied upon in making life
altering decisions. The development,
release, and timing of any features or
functionality described is subject to
change without warning.

What is coming in PostGIS 3.1?What is coming in PostGIS 3.1?
Manual:

Watch out for 3.1.0alpha3 coming this week.

https://postgis.net/docs/manual-dev/ (https://postgis.net/docs/manual-dev/)

https://postgis.net/docs/manual-dev/

Where to get itWhere to get it
PostGIS Docker - PG13 - postgis-master

Debian / Ubuntu - (currently
at 3.1.0alpha2)
Yum (CentOS, Redhat EL, Scienti�c Linux):

 (has 3.1.0alpha2)
Windows:

 (has fresh updates for PostgreSQL
11,12,13 with GEOS 3.9, GDAL 3.2, Proj 7.1.1)(Experimental Builds section - builds
on each commit)

https://github.com/postgis/docker-
postgis/tree/master/13-master (https://github.com/postgis/docker-
postgis/tree/master/13-master)

https://apt.postgresql.org (https://apt.postgresql.org)

https://yum.postgresql.org
(https://yum.postgresql.org)

https://postgis.net/windows_downloads/
(https://postgis.net/windows_downloads/)

https://github.com/postgis/docker-postgis/tree/master/13-master
https://apt.postgresql.org/
https://yum.postgresql.org/
https://postgis.net/windows_downloads/

New Functions and overloads - Non-GEOS relatedNew Functions and overloads - Non-GEOS related
Gridding functions - ST_HexagonGrid , ST_SquareGrid,(in 3.1.0alpha1)
ST_MaximumInscribedCircle (in 3.1.0alpa2)
ST_TileEnvelope - optional margin parameter
ST_Force3* functions can now take a measure. (in 3.1.0alpha2)

Enhancements - Non-GEOS relatedEnhancements - Non-GEOS related
Cast geojson to geometry - for implicit geojson ingestion
ST_ClusterKMeans now works with 3D geometries
postgis_topology: topology.GetRingEdges now implemented in C (should be much
faster)
Avoid de-Toasting -- means many spatial joins particularly on big geometries will be
much faster
postgis_topology: ST_GetFaceGeometry provides more info about corruption
ST_Simplify - speed improvements
Wagyu now at 0.5.0 should be faster MVT processing
More tweaking of function costs to better take advantage of parallelism
(3.1.0alpha2)
Too many things much faster to talk about but I didn't benchmark. I'm just taking
other people's word for it.
Textual output functions like ST_AsText, ST_AsGeoJSON etc, 5-100x faster

Only for GEOS >= 3.9 users, rest of you are out of luckOnly for GEOS >= 3.9 users, rest of you are out of luck
Several functions can now work in �xed precision with extra arg gridsize:
ST_Difference, ST_Intersection, ST_Subdivide, ST_SymDifference,

ST_UnaryUnion, ST_Union
Improved robustness of ST_Intersection, ST_Union and other functions if

running GEOS 3.9.0. Should result in fewer Topology Exception errors when

doing ST_Intersection and ST_Union. Using a magic called OverlayNG introduced
in 3.9 (boring name but I was not consulted)

From PostGIS 3+ on minor version dropped from LibFrom PostGIS 3+ on minor version dropped from Lib
For developers who need to test both versions in same PostgreSQL version build like so.
Will make the libs end in postgis-3.1.{ext} instead of postgis-3.{ext}

./configure --with-library-minor-version

How you install extensions in PostGIS 3+How you install extensions in PostGIS 3+
This is running in psql. If in pgAdmin just manually reconnect to your gisdb. Example is
gisdb but do for any spatial databases you have.

CREATE DATABASE gisdb;
ALTER DATABASE gisdb SET search_path=public,postgis,tiger,contrib;
\c gisdb
CREATE SCHEMA IF NOT EXISTS postgis;
CREATE SCHEMA IF NOT EXISTS contrib;
CREATE EXTENSION postgis SCHEMA postgis;
CREATE EXTENSION postgis_raster SCHEMA postgis; -- used to be part of postgis extension
CREATE EXTENSION postgis_sfcgal SCHEMA postgis; -- much of the functionality like dealing
with 2d TINS and Polyhedralsurfaces now supported in PostGIS proper
CREATE EXTENSION postgis_topology;
CREATE EXTENSION fuzzystrmatch SCHEMA contrib;
CREATE EXTENSION address_standardizer SCHEMA contrib; #for standardizing addresses
CREATE EXTENSION postgis_tiger_geocoder; -- needs postgis and fuzzystrmatch, can use addr
ess_standardizer

How you upgrade from PostGIS 3.0 to 3.1How you upgrade from PostGIS 3.0 to 3.1
SELECT postgis_extensions_upgrade();

How you upgrade from PostGIS 2.* to 3.1How you upgrade from PostGIS 2.* to 3.1
1. First install the binaries - different for each platform
2. Connect to your database
3. Run these sql commands

ALTER EXTENSION postgis UPDATE; -- if running pre PostGIS 2.5

SELECT postgis_extensions_upgrade(); -- this unpackages raster (if already on 3.0, no nee
d to run twice)

SELECT postgis_extensions_upgrade(); -- do again to repackage raster

Check your installationCheck your installation
SELECT postgis_full_version();

screen
POSTGIS="3.1.0dev 3.1.0alpha2-159-g9c6431748" [EXTENSION]
PGSQL="130" GEOS="3.9.0-CAPI-1.14.0" SFCGAL="1.3.8"
PROJ="7.1.1"
GDAL="GDAL 3.2.0, released 2020/10/26"
LIBXML="2.9.9" LIBJSON="0.12" LIBPROTOBUF="1.2.1" WAGYU="0.5.0 (Internal)" TOPOL
OGY RASTER

Plumbing change in 3.1, but mostly one of packaging, noPlumbing change in 3.1, but mostly one of packaging, no
change in install processchange in install process

Drop sfcgal (cgal binding) from postgis-3.so and spin-off as postgis_sfcgal-3.{ext}
markdown
In 3.0 (before):
 EXTENSION LIB ext=so,dylib,dll,whatever
 postgis -> postgis.{ext}
 postgis_raster -> postgis_raster-3.{ext}
 postgis_sfcgal -> postgis-3.{ext}
 postgis_topology -> postgis_topology-3.{ext}
 postgis_tiger_geocoder -> none
 address_standardizer -> address_standardizer-3.{ext}

In 3.1 (after):

 EXTENSION LIB ext=so,dylib,dll,whatever
 postgis -> postgis.{ext}
 postgis_raster -> postgis_raster-3.{ext}
 postgis_sfcgal -> postgis_sfcgal-3.{ext}
 postgis_topology -> postgis_topology-3.{ext}
 postgis_tiger_geocoder -> none
 address_standardizer -> address_standardizer-3.{ext}

Requirements changesRequirements changes
PostgreSQL 9.6+ (PostGIS 3.0 had minimum 9.5)
Bump minimum protobuf-c requirement to 1.1.0 to enable MVT (too many
complaints with lower versions)
Proj 5.0+, PostGIS 3.0 required Proj 4.9 or higher

PostGIS 3.1 ST_Union Fixed PrecisionPostGIS 3.1 ST_Union Fixed Precision
CREATE TABLE union_counties(name text, geom geometry);
-- 2 min 37 secs
INSERT INTO union_counties(name, geom)
SELECT 'original', ST_Union(the_geom)
FROM county;

-- 22 secs 983 ms - 0.005 degree fixed precision
INSERT INTO union_counties(name, geom)
SELECT '0.005', ST_Union(the_geom, 0.005)
FROM county;

-- 1 min - 0.001 degree fixed precision
INSERT INTO union_counties(name, geom)
SELECT '0.001', ST_Union(the_geom, 0.001)
FROM county;

SELECT name, ST_NPoints(geom), ST_IsValid(geom)
FROM union_counties;

screen
 name | st_npoints | st_isvalid
----------+------------+------------
 original | 106587 | t
 0.005 | 44554 | t
 0.001 | 74666 | t
 0.01 | 32497 | t
(4 rows)

PostGIS 3.1 ST_Subdivide Fixed PrecisionPostGIS 3.1 ST_Subdivide Fixed Precision
No Precision - 9 pieces - Before

Fixed Precision - 50 ft gridsize (srid is 2263 NY State Plane ft), 5 pieces

SELECT sb.ord, sb.geom
FROM (SELECT geom,
 ST_NPoints(geom) AS npoints
 FROM ch11.boroughs WHERE boroname = 'Queens') AS ref
 , ST_SubDivide(ref.geom,200) WITH ORDINALITY AS sb(geom,ord);

SELECT sb.ord, sb.geom
FROM (SELECT geom,
 ST_NPoints(geom) AS npoints
 FROM ch11.boroughs WHERE boroname = 'Queens') AS ref
 , ST_SubDivide(ref.geom,200,50) WITH ORDINALITY AS sb(geom,ord);

Before (no precision)Before (no precision)

After (50 ft grid)After (50 ft grid)

PostGIS 3.1 functions ST_HexagonGridPostGIS 3.1 functions ST_HexagonGrid

1. ST_HexagonGrid creates a grid of the bounding box of geometry passed to it
2. Need ST_Intersects to �lter out the hexagons that don't intersect the geometry

3. The size is length of an edge on the hexagon

https://postgis.net/docs/manual-dev/ST_HexagonGrid.html
(https://postgis.net/docs/manual-dev/ST_HexagonGrid.html)

https://postgis.net/docs/manual-dev/ST_HexagonGrid.html

In this case we are using Northern CA State Plane feet.

10,000 feet edge size 5,000 feet edge size

SELECT grid.i, grid.j, ST_Union(grid.geom) AS geom
FROM ch11.cities AS c
 INNER JOIN ST_HexagonGrid(10000, c.geom) AS grid ON ST_Intersects(c.geom, grid.geom)
 WHERE c.city = 'SAN FRANCISCO'
GROUP BY grid.i, grid.j, grid.geom;

Hexagons cut at the middle, not able to nest a hexagon completely in anotherHexagons cut at the middle, not able to nest a hexagon completely in another

PostGIS 3.1 functions ST_SquareGridPostGIS 3.1 functions ST_SquareGrid

1. ST_SquareGrid creates a grid of the bounding box of geometry passed to it
2. Need ST_Intersects to �lter out the squares that don't intersect the geometry
3. The size: 10,000 is length of an edge in measure of the units of the spatial

reference system, in our case it would be California State Plane feet

https://postgis.net/docs/manual-dev/ST_SquareGrid.html
(https://postgis.net/docs/manual-dev/ST_SquareGrid.html)

https://postgis.net/docs/manual-dev/ST_SquareGrid.html

PostGIS 3.1 ST_SquareGrid San FranciscoPostGIS 3.1 ST_SquareGrid San Francisco

10,000 feet edge size 5,000 feet edge size
1,000 feet edge size

SELECT grid.i, grid.j, ST_Union(grid.geom) AS geom
FROM ch11.cities AS c
 INNER JOIN ST_SquareGrid(10000, c.geom) AS grid ON ST_Intersects(c.geom, grid.geom)
 WHERE c.city = 'SAN FRANCISCO'
GROUP BY grid.i, grid.j, grid.geom;

Square Grids are neatly divisible �t into smaller gridsSquare Grids are neatly divisible �t into smaller grids

PostGIS 3.1: MaximumInscribedCircle - new vs. MinimumBoundingCirclePostGIS 3.1: MaximumInscribedCircle - new vs. MinimumBoundingCircle
http://postgis.net/docs/manual-dev/ST_MaximumInscribedCircle.html
(http://postgis.net/docs/manual-dev/ST_MaximumInscribedCircle.html)
http://postgis.net/docs/ST_MinimumBoundingCircle.html
(http://postgis.net/docs/ST_MinimumBoundingCircle.html)

SELECT ic.radius, ic.center, ic.nearest, ST_Buffer(ic.center, ic.radius) As geom
 FROM ch11.boroughs AS c, ST_MaximumInscribedCircle(c.geom) AS ic
 WHERE boroname = 'Brooklyn';

SELECT ST_MinimumBoundingCircle(c.geom) AS geom
 FROM ch11.boroughs AS c
 WHERE boroname = 'Brooklyn';

http://postgis.net/docs/manual-dev/ST_MaximumInscribedCircle.html
http://postgis.net/docs/ST_MinimumBoundingCircle.html

PostGIS 3.0 enhanced GeoJSON support to now accept full featuresPostGIS 3.0 enhanced GeoJSON support to now accept full features
very very old way of creating a feature collection -

 (painful)

New way

https://www.postgresonline.com/journal/archives/267-Creating-GeoJSON-Feature-
Collections-with-JSON-and-PostGIS-functions.html
(https://www.postgresonline.com/journal/archives/267-Creating-GeoJSON-Feature-
Collections-with-JSON-and-PostGIS-functions.html)

SELECT json_build_object('type', 'FeatureCollection', 'features',
 json_agg(ST_AsGeoJSON(c.*)::json))
 FROM ch11.cities AS c
 -- (transform is just to convert to 2227 North CA stateplane feet)
 WHERE c.geom && ST_Transform(ST_MakeEnvelope(-122, 37.74, -121.5, 38,4326), 2227);

https://www.postgresonline.com/journal/archives/267-Creating-GeoJSON-Feature-Collections-with-JSON-and-PostGIS-functions.html

In []: %%sql
SELECT ST_AsGeoJSON(a.*)
FROM ch09.airports AS a
 WHERE municipality ILIKE 'BOSTON%' LIMIT 3;

PostGIS 3 ST_ASMVT faster and more parallelizablePostGIS 3 ST_ASMVT faster and more parallelizable
If you are new to Mapbox Vector Tiles, try using

 (Crunchy Data pg_tileserv). pg_tileserv is a
minimalist tile server written in Go that leverages PostGIS MVT functions. General
concept behind it detailed -

1. Download the binary for your OS
2. Create a shell script # Nix

WindowsWindows

1. Edit the packaged pg_tileserv.toml �le if you want to change the port etc.

2. Browse to

https://github.com/CrunchyData/pg_tileserv
(https://github.com/CrunchyData/pg_tileserv)

https://info.crunchydata.com/blog/dynamic-vector-tiles-
from-postgis (https://info.crunchydata.com/blog/dynamic-vector-tiles-from-postgis)

export DATABASE_URL=postgresql://postgres:password@localhost/postgis_in_action
pg_tileserv

set DATABASE_URL=postgresql://postgres:password@localhost/postgis_in_action
pg_tileserv

http://localhost:7800 (http://localhost:7800)

https://github.com/CrunchyData/pg_tileserv
https://info.crunchydata.com/blog/dynamic-vector-tiles-from-postgis
http://localhost:7800/

pg_tileserv catalogpg_tileserv catalog

How do you use mapbox vector tiles for your maps?How do you use mapbox vector tiles for your maps?

In []: from ipyleaflet import Map, VectorTileLayer, basemaps, LayersControl

http://localhost:7800/ch04.us_counties/{z}/{x}/{y}.pbf #tile url for counties can use in
leaflet
vlparcels = VectorTileLayer(name='Parcels', url='http://localhost:7800/staging.parcels/{z}
/{x}/{y}.pbf')
vlff = VectorTileLayer(name='Fast Food', url='http://localhost:7800/ch01.restaurants/{z}/
{x}/{y}.pbf')

m = Map(center=(42.38,-71.12), zoom = 15, basemap=basemaps.OpenStreetMap.BlackAndWhite)

m.add_layer(vlparcels)
m.add_layer(vlff)
m.add_control(LayersControl())
m

In []:

